1. Lee 11-14 SECOND Consider the following two 1 -forms on \mathbb{R}^{3}

$$
\begin{aligned}
\omega & =-\frac{4 z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 x d z}{x^{2}+1} \\
\eta & =-\frac{4 x z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 d z}{x^{2}+1}
\end{aligned}
$$

(a) Set up and evaluate the line integral of each 1-form along the straight line segment from $(0,0,0)$ to $(1,1,1)$.
(b) Determine whether either of ω or η is exact.
(c) For each 1-form that is exact, find a potential function and use it to recompute the line integral.
2. Lee 16-9 SECOND

Let ω be the $(n-1)$-form on $\mathbb{R}^{n} \backslash\{0\}$

$$
\omega=|x|^{-n} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n} .
$$

(a) Show that $\iota_{S^{n-1}}^{*} \omega$ is the Riemannian volume form of S^{n-1} with respect to the round metric and the standard orientation.
(b) Show that ω is closed but not exact on $\mathbb{R}^{n} \backslash\{0\}$.
3. Lee 16-18 a, b, c SECOND $=$ Lee 14-12 a, c FIRST

Let (M, g) be an oriented Riemannian n-manifold. This problem outlines an important generalization of the operator

$$
*: C^{\infty}(M) \rightarrow \Omega^{n}(M)
$$

defined in this chapter.
(a) For each $k=1, \ldots, n$, show that g determines a unique inner product on on $\Lambda^{k}\left(T_{p}^{*} M\right)$ (denoted by $\langle\cdot, \cdot,\rangle_{g}$ just like the inner product on Tp M) satisfying

$$
\left\langle\omega^{1} \wedge \ldots \wedge \omega^{k}, \eta^{1} \wedge \ldots \wedge \eta^{k}\right\rangle_{g}=\operatorname{det}\left(\left\langle\left(\omega^{i}\right)^{\#},\left(\eta^{j}\right)^{\#}\right\rangle_{g}\right)
$$

whenever $\omega^{1}, \ldots, \omega^{k}, \eta^{1}, \ldots, \eta^{k}$ are covectors at p. [Hint given in Lee 16-18 (a) SECOND $=$ Lee 14-12 (a) FIRST].
(b) Show that the Riemannian volume form $d V_{g}$ is the unique positively oriented n-form that has unit norm with respect to this inner product.
(c) For each $k=0, \ldots, n$ show that there is a unique smooth bundle homomorphism

$$
: \Lambda^{k} T^{} M \rightarrow \Lambda^{n-k} T^{*} M
$$

satisfying

$$
\omega \wedge * \eta=\langle\omega, \eta\rangle_{g} d V_{g}
$$

for all smooth k-forms ω, η. (For $k=0$, interpret the inner product as ordinary multiplication.) This map is called the Hodge star operator. [Hint given in Lee 16-18 (c) SECOND $=$ Lee14-12 (b) FIRST]

4. Lee 17-1 SECOND

Let M be a smooth manifold with or without boundary, and let $\omega \in \Omega^{p}(M), \eta \in \Omega^{q}(M)$ be closed forms. Show that the deRham cohomology class of $\omega \wedge \eta$ depends only on the cohomology classes of ω and η, and thus there is a well-defined bilinear map

$$
\cup: H_{\mathrm{dR}}^{p}(M) \times H_{\mathrm{dR}}^{q}(M) \rightarrow H_{\mathrm{dR}}^{p+q}(M),
$$

called the cup product given by $[\omega] \cup[\eta]=[\omega \wedge \eta]$.
5. How difficult was this assignment?

