Math 444/539 UPDATED HW#8, due Tuesday 11/5/19 NAME:

- 1. Consider the function $f(x,y) = \sin(4\pi x)\cos(6\pi y)$ on the torus $\mathbb{T} = \mathbb{R}^2/\mathbb{Z}^2$.
 - (a) Prove that f is a Morse function, e.g. that every critical point is nondegenerate. Calculate the number of minima, saddles, and maxima. You can appeal to the standard second derivative test from calculus.
 - (b) Describe the evolution of the sublevel sets $f^{-1}((-\infty,c))$ as c varies from the lowest minimum value to the highest maximum value. You may use wolfram alpha or another computer aided means in your quest.
- 2. The Hopf fibration is the map $f: S^3 \to \mathbb{C}P^1$ sending $(z^1, z^2) \in \mathbb{C}^2$ with $|z^1|^2 + |z^2|^2 = 1$ to $[z^1: z^2] \in \mathbb{C}P^1$. Show that the Hopf fibration is a submersion.
- 3. (Lee Second 4-6) Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k > 0.
- 4. (Lee Second 5-1) Consider the map $\Phi: \mathbb{R}^4 \to \mathbb{R}^4$ defined by

$$\Phi(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y).$$

Show that (0,1) is a regular value of ϕ and that the level set $\Phi^{-1}(0,1)$ is diffeomorphic to S^2 .

5. (Lee Second 5-10) For each $a \in \mathbb{R}$, let M_a be the subset of \mathbb{R}^2 defined by

$$M_a = \{(x, y) \mid y^2 = x(x - 1)(x - a)\}.$$

For which values of a is M_a an embedded submanifold of \mathbb{R}^2 ? For which values can M_a be given a topology and smooth structure making it into an immersed submanifold?

math* Let M be a smooth manifold and let $f: M \to M$ be a smooth map.

(a) Define the diagonal

$$\Delta = \{(p, p) \mid p \in M\} \subset M \times M$$

and the graph

$$\Gamma(f) = \{ (p, f(p)) \mid p \in M \} \subset M \times M.$$

Check that Δ and $\Gamma(f)$ are submanifolds of $M \times M$ which are canonically diffeomorphic to M.

- (b) A fixed point of f is a point $p \in M$ with f(p) = p. A fixed point p is nondegenerate if $1 df_p : T_pM \to T_pM$ is invertible. Show that all fixed points of f are nondegenerate if and only if $\Gamma(f)$ is transverse to Δ .
- (c) The Lefschetz sign of a nondegenerate fixed point p, denoted by $\epsilon(p) \in \{\pm 1\}$, is the sign of the determinant of $1 df_p$. If all fixed points are nondegenerate, and if there are only finitely many fixed points, define the signed count of fixed points by

$$\#\operatorname{Fix}(f) = \sum_{f(p)=p} \epsilon(p) \in \mathbb{Z}.$$

Let A be a 2×2 integer matrix. The map $A : \mathbb{R}^2 \to \mathbb{R}^2$ descends to a map $f_A : T^2 \to T^2$, where $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. If A does not have 1 as an eigenvalue, show that all fixed points of f_A are nondegenerate, and compute $\#\operatorname{Fix}(f)$ in terms of A.

Remark 1. If $\Gamma(f)$ is transverse to Δ , and if M is compact and oriented, then the intersection number¹ is given by

$$\Gamma(f) \cdot \Delta = \# \operatorname{Fix}(f).$$

For those of you who know what homology is, this can be used to prove the *Lefschetz fixed* point theorem

$$\#\operatorname{Fix}(f) = \sum_{i} (-1)^{i} \operatorname{Tr}(f_{*}: H_{i}(M; \mathbb{Q}) \to H_{i}(M; \mathbb{Q})).$$

everyone: How difficult was this assignment? How many hours did you spend on it?

¹The intersection number is something we won't have a chance to discuss this semester.