Math 444/539 UPDATED HW\#7, due Tuesday 10/29/19

NAME:

1. Lee 3-4 [SECOND] $=4-1$ [FIRST].

Show that $T S^{1}$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
2. Show that if M and N are smooth manifolds and if $p \in M$ and $q \in N$, then there is a canonical isomorphism

$$
T_{(p, q)}(M \times N)=T_{p} M \oplus T_{q} N
$$

Describe this isomorphism in terms of (a) [math grads] derivations and (b) [everyone] linear combinations of partial derivatives with respect to coordinate charts.
3. The zero section of the tangent bundle $T M$ is the set of zero tangent vectors,

$$
Z=\{(p, 0)\} \subset T M=\left\{(p, V) \mid p \in M, V \in T_{p} M\right\}
$$

(a) Show that Z is a submanifold of $T M$ which is diffeomorphic to M.
(b) Show that if $(p, 0) \in Z$, then there is a canonical (not depending on a choice of coordinates) isomorphism

$$
T_{(p, 0)} T M=T_{p} M \oplus T_{p} M
$$

4. Lee 8-10 [SECOND]

Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive and let $F: M \rightarrow N$ be the map

$$
F(x, y)=\left(x y, \frac{y}{x}\right) .
$$

Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$ where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} ; \quad Y=y \frac{\partial}{\partial x}
$$

5. Lee 8-11 [SECOND] $=4-5[$ FIRST $]$

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$.

$$
\begin{aligned}
& \text { (a) } X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \\
& \text { (b) } Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
\end{aligned}
$$

6. Lee 8-16 [SECOND] $=4-11[$ FIRST $]$

For each of the following pairs of vector fields X, Y defined on \mathbb{R}^{3}, compute the Lie bracket $[X, Y]$.

$$
\begin{array}{ll}
\text { (a) } \begin{aligned}
X_{1} & =y \frac{\partial}{\partial z}-2 x y^{2} \frac{\partial}{\partial y} ; & Y_{1} & =\frac{\partial}{\partial y} \\
\text { (b) } X_{2} & =x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} & Y_{2} & =y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}
\end{aligned} \text { (}
\end{array}
$$

everyone: How difficult was this assignment? How many hours did you spend on it?

