Math 401 HW\#7, due Wednesday 10/30/19

NAME:

1. Exercise $\S 6$ (1)

Let S be an ovaloid in \mathbb{R}^{3}. Show that

$$
\int_{S} H^{2} \geq 4 \pi
$$

and that equality occurs if and only if S is a sphere.
2. Exercise $\S 6$ (7)

Show that the following integral formulas are always valid:

$$
\int_{S}\langle N, a\rangle H=0 \quad \text { and } \quad \int_{S}\langle N, a\rangle K=0
$$

where S is a compact surface, N its Gauss map, H and K its mean and Gauss curvatures, and $a \in \mathbb{R}^{3}$ is an arbitrary vector.
3. Exercise $\S 6$ (8)

Let S be a compact surface contained in a closed ball of radius $r>0$ and such that its mean curvature satisfies $|H| \leq 1 / r$. Prove that S is a sphere of radius r.
4. Exercise $\S 6$ (16)

Let S be a compact surface and $V: S \rightarrow \mathbb{R}^{3}$ a tangent vector field. Prove that

$$
\begin{gathered}
\int_{S}(\operatorname{div} V)(p) d p=0 \\
\int_{S}\left\{k_{1}(p)\left\langle(d V)_{p}\left(e_{1}\right), e_{1}\right\rangle+k_{2}(p)\left\langle(d V)_{p}\left(e_{2}\right), e_{2}\right\rangle\right\} d p=0 .
\end{gathered}
$$

where $\left\{e_{1}, e_{2}\right\}$ is a basis of principal directions at $T_{p} S$ for each $p \in S$.
5. Exercise $\S 6$ (17)

Let $f: S \rightarrow \mathbb{R}$ be a differentiable function defined on a surface S. We use the term gradient of f for the vector field of tangent vectors denoted by $\nabla f: S \rightarrow \mathbb{R}^{3}$ and given by

$$
\left\{\begin{array}{l}
\langle(\nabla f)(p), v\rangle=(d f)_{p}(v) \text { for all } v \in T_{p} S, \\
\langle(\nabla f)(p), N(p)\rangle=0
\end{array}\right.
$$

where $N(p)$ is a unit normal to S at p. Prove that ∇f is a differentiable vector field and that, if it is identically zero, f is constant on each connected component of S. This is HW $6 \neq 4$ rehashed (sorry), but now we have a definition of a gradient...

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?

