Math 4081 HW\#7, due Wednesday 4/11/18 NAME:

1. (6 points) Define a 1 -form α on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\alpha=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

(a) Calculate $\int_{C} \alpha$ for any circle C of radius r around the origin.
(b) Prove that in the half plane $\{x>0\}, \alpha$ is the differential of a function. Hint: try $\arctan (y / x)$ as a random possibility.
(c) Let $A \subset \mathbb{R}^{2} \backslash\{(0,0)\}$ denote the positive x-axis, and let $\gamma:[a, b] \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}$ be a loop which is transverse to A. Show that the intersection number $A \cdot \gamma \in \mathbb{Z}$ satisfies

$$
\frac{1}{2 \pi} \int_{\gamma} \alpha=A \cdot \gamma
$$

2. (8 points) Lee 14.6 SECOND

Define a 2 -form ω on \mathbb{R}^{3} by

$$
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

(b) Compute $d \omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3 -form.
(c) Compute the pullback $\iota_{S^{2}}^{*} \omega$ to S^{2}, using coordinates (φ, θ) on the open subset where these coordinates are defined.
(d) Show that $\iota_{S^{2}}^{*} \omega$ is nowhere zero.
3. (4 points) Lee 14.7 b, c SECOND

In each of the following cases, M and N are smooth manifolds, ω is a smooth differential form on N, and $F: M \rightarrow N$ is a smooth map. In each case, compute $d \omega$ and $F^{*} \omega$, and verify by direct computation that $F^{*}(d \omega)=d\left(F^{*} \omega\right)$.
(a) $M=\mathbb{R}^{2}$ and $N=\mathbb{R}^{3}, \quad \omega=y d z \wedge d x$,

$$
F(\theta, \varphi)=((\cos \varphi+2) \cos \theta,(\cos \varphi+2) \sin \theta, \sin \varphi)
$$

(b) $M=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$ and $N=\mathbb{R}^{3} \backslash\{0\}, \quad \omega=\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$,

$$
F(u, v)=\left(u, v, \sqrt{1-u^{2}-v^{2}}\right) .
$$

4. How difficult was this assignment?
