Math 4081 HW#7, due Wednesday 4/11/18 NAME:

1. (6 points) Define a 1-form α on the punctured plane $\mathbb{R}^2 \setminus \{0\}$ by

$$\alpha = \left(\frac{-y}{x^2 + y^2}\right)dx + \left(\frac{x}{x^2 + y^2}\right)dy.$$

- (a) Calculate $\int_C \alpha$ for any circle C of radius r around the origin.
- (b) Prove that in the half plane $\{x > 0\}$, α is the differential of a function. Hint: try $\arctan(y/x)$ as a random possibility.
- (c) Let $A \subset \mathbb{R}^2 \setminus \{(0,0)\}$ denote the positive x-axis, and let $\gamma : [a,b] \to \mathbb{R}^2 \setminus \{(0,0)\}$ be a loop which is transverse to A. Show that the intersection number $A \cdot \gamma \in \mathbb{Z}$ satisfies

$$\frac{1}{2\pi} \int_{\gamma} \alpha = A \cdot \gamma.$$

2. (8 points) Lee 14.6 SECOND Define a 2-form ω on \mathbb{R}^3 by

$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute $d\omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the pullback $\iota_{S^2}^* \omega$ to S^2 , using coordinates (φ, θ) on the open subset where these coordinates are defined.
- (d) Show that $\iota_{S^2}^* \omega$ is nowhere zero.

3. (4 points) Lee 14.7 b, c SECOND

In each of the following cases, M and N are smooth manifolds, ω is a smooth differential form on N, and $F: M \to N$ is a smooth map. In each case, compute $d\omega$ and $F^*\omega$, and verify by direct computation that $F^*(d\omega) = d(F^*\omega)$.

(a)
$$M = \mathbb{R}^2$$
 and $N = \mathbb{R}^3$, $\omega = ydz \wedge dx$,
 $F(\theta, \varphi) = ((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi)$.
(b) $M = \{(u, v) \in \mathbb{R}^2 \mid u^2 + v^2 < 1\}$ and $N = \mathbb{R}^3 \setminus \{0\}, \quad \omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}},$
 $F(u, v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right).$

4. How difficult was this assignment?