Math 401 HW\#6, due Wednesday 10/23/19

1. Exercise 5.12

Show that the map $X:(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}$ defined by

$$
X(u, v)=\left(a_{1}, a_{2}, a_{3}\right)+r(\sin u \cos v, \sin u \sin v, \cos u)
$$

is a parametrization of the sphere $S^{2}(r)$ with center $a=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ and radiu $r>0$. Use this together with Proposition 5.8 to prove that the area of the sphere is $4 \pi r^{2}$.
2. Exercise $\S 5$ (2)

Let S be a compact surface with non-vanishing Gauss curvature everywhere and an injective Gauss map. Show that

$$
\int_{S} K=4 \pi
$$

3. Exercise §5 (8)

Show that, if S is a compact surface,

$$
\int_{S}\langle N, a\rangle=0
$$

where N is a Gauss map and a is an arbitrary vector.
4. Exercise 5.36

We associate to each differentiable function $f: A \rightarrow \mathbb{R}$, defined on a subset A of Euclidean space, a vector field ∇f, also defined on A, by

$$
\langle(\nabla f)(p), v\rangle=(d f)_{p}(v), \quad \text { for all } v \in \mathbb{R}^{3}
$$

This vector field is called the gradient of f. Prove that the three components of ∇f are

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

Show that, if the gradient of a differentiable function f vanishes everywhere, then f is constant on each connected component of A.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?

