Math 4081 HW#6, due Wednesday 4/4/18 NAME:

1. Lee 11.7 [SECOND].

In the following subproblems, M and N are smooth manifolds, $F: M \to N$ is a smooth map, and ω is a covector field on N. Compute $F^*\omega$ in each case.

(a)
$$M = N = \mathbb{R}^2$$
, $F(s,t) = (st, e^t)$, $\omega = xdy - ydx$

(b)
$$M = \mathbb{R}^2$$
 and $N = \mathbb{R}^3$, $F(\theta, \varphi) = ((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi)$, $\omega = z^2 dx$

(c)
$$M = \{(s,t) \in \mathbb{R}^2 \mid s^2 + t^2 < 1\}$$
 and $N = \mathbb{R}^3 \setminus \{0\}$, $F(s,t) = (s,t,\sqrt{1-s^2-t^2})$, $\omega = (1-x^2-y^2)dz$

2. Lee 11.11 [SECOND].

Let M be a smooth manifold, and $C \subset M$ be an embedded submanifold. Let $f \in C^{\infty}(M)$, and suppose $p \in C$ is a point at which f attains a local maximum or minimum value among points in C. Given a smooth local defining function $\Phi: U \to \mathbb{R}^k$ for C on a neighborhood U of p in M, show that there are real numbers $\lambda_1, ... \lambda_k$ (called Lagrange multipliers) such that

$$df_p = \lambda_1 d\Phi^1|_p + \dots + \lambda_k d\Phi^k|_p.$$

3. Check in local coordinates that if α is a 1-form and V and W are vector fields on M, then $d\alpha(V,W)=V\alpha(W)-W\alpha(V)-\alpha([V,W]).$

4. Let $\omega: \mathbb{R}^4 \otimes \mathbb{R}^4 \to \mathbb{R}$ be an alternating bilinear form. Show that there exist linear maps $\alpha, \beta: \mathbb{R}^4 \to \mathbb{R}$ with $\omega = \alpha \wedge \beta$ if and only if $\omega \wedge \omega = 0$. *Hint*: Choose a basis in which ω looks simple.

5. Let M be a smooth manifold with a Riemannian metric $g: TM \otimes TM \to \mathbb{R}$. If $f: M \to \mathbb{R}$ is a smooth function, the *gradient* of f with respect to g is the vector field ∇f defined by

$$df = g(\nabla f, \cdot).$$

- (a) In local coordinates $\{x^i\}$, if $g(\partial/\partial x^i, \partial/\partial x^j) = g_{ij}$, explain how to compute ∇f in terms of g_{ij} and $\partial f/\partial x^i$. Hint: See HW#1.
- (b) Let $f: M \to \mathbb{R}$ and let $p \in M$. Show that if $V \in T_pM$ satisfies $df_p(V) > 0$, then there exists a Riemannian metric g on M with $\nabla f(p) = V$.

6. How difficult was this assignment?			