1. Lee SECOND 9-3. (8 points)

Compute the flow of each of the following vector fields on \mathbb{R}^{2} :
(a) $V=y \frac{\partial}{\partial x}+\frac{\partial}{\partial y}$
(b) $W=x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}$
(c) $X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$
(d) $Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}$
2. Lee SECOND 9-16. (3 points)

Give an example of smooth vector fields V, \widetilde{V}, and W on \mathbb{R}^{2} such that

$$
V=\widetilde{V}=\frac{\partial}{\partial x}
$$

along the x-axis but

$$
\mathcal{L}_{V} W \neq \mathcal{L}_{\widetilde{V}} W
$$

at the origin. Remark: this shows that it is really necessary to know the vector field V to compute $\left(\mathcal{L}_{V} W\right)_{p}$; it is not sufficient just to know the vector V_{p}, or even to know the values of V along an integral curve of V.
3. Lee SECOND 9-17. (6 points)

For each k-tuple of vector fields on \mathbb{R}^{3} shown below, either find smooth coordinates $\left(s^{1}, s^{2}, s^{3}\right)$ in a neighborhood of $(1,0,0)$ such that $V_{i}=\frac{\partial}{\partial s^{i}}$ for $i=1, \ldots, k$ or explain why there are none.
(a) $(k=2) ; \quad V_{1}=\frac{\partial}{\partial x}, \quad V_{2}=\frac{\partial}{\partial x}+\frac{\partial}{\partial y}$
(b) $(k=2) ; \quad V_{1}=(x+1) \frac{\partial}{\partial x}-(y+1) \frac{\partial}{\partial y}, \quad V_{2}=(x+1) \frac{\partial}{\partial x}+(y+1) \frac{\partial}{\partial y}$
(c) $\quad(k=3) ; \quad V_{1}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad V_{2}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}, \quad V_{3}=z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}$
4. Lee SECOND 9-18. (3 points)

Define vector fields X and Y on the plane as in (1) by

$$
X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} \quad Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}
$$

Recall that you computed the flows ϕ and ψ of X and Y. Now verify that the flows do not commute by finding explicit open intervals I and J containing 0 such that $\phi_{s} \circ \psi_{t}$ and $\psi_{t} \circ \phi_{s}$ are both defined for all $(s, t) \in I \times J$, but they are unequal for some such (s, t).
5. How difficult was this assignment?

