UPDATED Math 401 HW#3, due Wednesday 9/18/19

NAME:

- 1. Multi Warm Up Let (u, v) = f(x, y) = (x - 2y, 2x - y).
 - (a) Compute the inverse transformation $(x, y) = f^{-1}(u, v)$.
 - (b) Find the image (e.g. sketch it) in the *uv*-plane of the triangle bounded by the lines Y = x, y = -x, y = 1 2x.
 - (c) Find the region in the xy-plane that is mapped to the triangle with vertices (0,0), (-1,2), and (2,1) in the uv-plane.
- 2. Multi meets Math 401

Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be the spherical coordinate map,

$$(x, y, z) = f(\rho, \varphi, \theta) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (a) Without looking this up, describe the surfaces in xyz-space that are the images of the planes $\rho = \text{positive constant}$, $\varphi = \text{constant}$ (check $(0, \frac{\pi}{2}), \frac{\pi}{2}, (\frac{\pi}{2}, \pi)$ separately), and $\theta = \text{constant}$ (in $[0, 2\pi)$).
- (b) Compute the derivative Df and show the Jacobian is det $Df(\rho, \varphi, \theta) = \rho^2 \sin \varphi$.
- (c) What is the condition on the point $(\rho_0, \varphi_0, \theta_0)$ for f to be locally invertible about this point? What is the corresponding condition on $(x_0, y_0, z_0) = f(\rho_0, \varphi_0, \theta_0)$?
- 3. Exercise 2.43

If $X: U \to S$ is a parametrization of a surface, show that $X: U \to X(U)$ is a diffeomorphism.

4. Exercise $\S2$ (13)

Let $f : S_1 \to S_2$ be a differentiable map between surfaces. If $p \in S_1$ and $\{e_1, e_2\}$ is an orthonormal basis of T_pS , we define the **absolute value of the Jacobian of** f at p by

$$|\operatorname{Jac} f|(p) = |(df)_p(e_1) \wedge (df)_p(e_2)|.$$

- (a) Prove that this definition does not depend on the orthonormal basis.
- (b) Prove that $|\text{Jac}f|(p) \neq 0$ if and only if $(df)_p$ is an isomorphism.
- 5. Weird but true

Given polar (r, θ) and rectangular $(x := r \cos \theta, y := r \sin \theta)$ coordinates on \mathbb{R}^2 we have that the coordinate vector fields transform by

$$\begin{array}{rcl} \frac{\partial}{\partial r} & = & \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\ \frac{\partial}{\partial \theta} & = & \frac{\partial x}{\partial \theta} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}, \end{array}$$

thanks to my Math 444/539 students who proved this fun fact for arbitrary coordinate transformations in any finite dimension. Using this fact, consider $f(x, y) = x^2$ on \mathbb{R}^2 and let X be the vector field

$$X = \text{grad } f = 2x \frac{\partial}{\partial x}$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using the above proposition and show that it is *not* equal to

$$\frac{\partial f}{\partial r}\frac{\partial}{\partial r} + \frac{\partial f}{\partial \theta}\frac{\partial}{\partial \theta}.$$

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?