1. Multi Warm Up

Let $(u, v)=f(x, y)=(x-2 y, 2 x-y)$.
(a) Compute the inverse transformation $(x, y)=f^{-1}(u, v)$.
(b) Find the image (e.g. sketch it) in the $u v$-plane of the triangle bounded by the lines $Y=x, y=-x, y=1-2 x$.
(c) Find the region in the $x y$-plane that is mapped to the triangle with vertices $(0,0),(-1,2)$, and $(2,1)$ in the $u v$-plane.
2. Multi meets Math 401

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the spherical coordinate map,

$$
(x, y, z)=f(\rho, \varphi, \theta)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi)
$$

(a) Without looking this up, describe the surfaces in $x y z$-space that are the images of the planes $\rho=$ positive constant, $\varphi=$ constant $\left(\operatorname{check}\left(0, \frac{\pi}{2}\right), \frac{\pi}{2},\left(\frac{\pi}{2}, \pi\right)\right.$ separately), and $\theta=$ constant (in $[0,2 \pi)$).
(b) Compute the derivative $D f$ and show the Jacobian is $\operatorname{det} D f(\rho, \varphi, \theta)=\rho^{2} \sin \varphi$.
(c) What is the condition on the point $\left(\rho_{0}, \varphi_{0}, \theta_{0}\right)$ for f to be locally invertible about this point? What is the corresponding condition on $\left(x_{0}, y_{0}, z_{0}\right)=f\left(\rho_{0}, \varphi_{0}, \theta_{0}\right)$?
3. Exercise 2.43

If $X: U \rightarrow S$ is a parametrization of a surface, show that $X: U \rightarrow X(U)$ is a diffeomorphism.
4. Exercise §2 (13)

Let $f: S_{1} \rightarrow S_{2}$ be a differentiable map between surfaces. If $p \in S_{1}$ and $\left\{e_{1}, e_{2}\right\}$ is an orthonormal basis of $T_{p} S$, we define the absolute value of the Jacobian of f at p by

$$
|\operatorname{Jac} f|(p)=\left|(d f)_{p}\left(e_{1}\right) \wedge(d f)_{p}\left(e_{2}\right)\right| .
$$

(a) Prove that this definition does not depend on the orthonormal basis.
(b) Prove that $|\operatorname{Jac} f|(p) \neq 0$ if and only if $(d f)_{p}$ is an isomorphism.
5. Weird but true

Given polar (r, θ) and rectangular $(x:=r \cos \theta, y:=r \sin \theta)$ coordinates on \mathbb{R}^{2} we have that the coordinate vector fields transform by

$$
\begin{aligned}
\frac{\partial}{\partial r} & =\frac{\partial x}{\partial r} \frac{\partial}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\
\frac{\partial}{\partial \theta} & =\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}
\end{aligned}
$$

thanks to my Math 444/539 students who proved this fun fact for arbitrary coordinate transformations in any finite dimension. Using this fact, consider $f(x, y)=x^{2}$ on \mathbb{R}^{2} and let X be the vector field

$$
X=\operatorname{grad} f=2 x \frac{\partial}{\partial x}
$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using the above proposition and show that it is not equal to

$$
\frac{\partial f}{\partial r} \frac{\partial}{\partial r}+\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta} .
$$

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience?

