1. The zero section of the tangent bundle $T M$ is the set of zero tangent vectors,

$$
Z=\{(p, 0)\} \subset T M=\left\{(p, V) \mid p \in M, V \in T_{p} M\right\}
$$

(a) Show that Z is a submanifold of $T M$ which is diffeomorphic to M.
(b) Show that if $(p, 0) \in Z$, then there is a canonical (not depending on a choice of coordinates) isomorphism

$$
T_{(p, 0)} T M=T_{p} M \oplus T_{p} M
$$

2. The Hopf fibration is the map $f: S^{3} \rightarrow \mathbb{C} P^{1}$ sending $\left(z^{1}, z^{2}\right) \in \mathbb{C}^{2}$ with $\left|z^{1}\right|^{2}+\left|z^{2}\right|^{2}=1$ to $\left[z^{1}: z^{2}\right] \in \mathbb{C} P^{1}$. Show that the Hopf fibration is a submersion.
3. (Lee Second 4-6) Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion $F: M \rightarrow \mathbb{R}^{k}$ for any $k>0$.
4. (Lee Second 5-1) Consider the map $\Phi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ defined by

$$
\Phi(x, y, s, t)=\left(x^{2}+y, x^{2}+y^{2}+s^{2}+t^{2}+y\right) .
$$

Show that $(0,1)$ is a regular value of ϕ and that the level set $\Phi^{-1}(0,1)$ is diffeomorphic to S^{2}.
5. For which values of R does the hyperboloid defined by $x^{2}+y^{2}-z^{2}=1$ intersect the sphere $x^{2}+y^{2}+z^{2}=R$ transversely? What does the intersection look like for different values of R ?
6. (Lee Second 6-9) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map defined by

$$
F(x, y)=\left(e^{y} \cos x, e^{y} \sin x, e^{-y}\right)
$$

a) For which positive numbers r is F transverse to the 2 -sphere of radius $r, S_{r}(0) \subset \mathbb{R}^{3}$?
b) For which positive numbers r is $F^{-1}\left(S_{r}(0)\right)$ an embedded submanifold of \mathbb{R}^{2} ?
7. How difficult was this assignment?

