Math 444/539 HW#2, due Monday 9/9/19 NAME:

1. Show that a space X is simply connected if and only if there exists a unique homotopy class of paths connecting any two points in X.

- 2. Show that for a space X, the following three conditions are equivalent:
 - (a) Every map $S^1 \to X$ is homotopic to a constant map, with image a point.
 - (b) Every map $S^1 \to X$ extends to a map $D^2 \to X$.
 - (c) $\pi_1(X, x_0) = 0$ for all $x_0 \in X$.

Deduce that a space X is simply-connected if and only if all maps $S^1 \to X$ are homotopic. [In this problem, 'homotopic' means 'homotopic without regard to basepoints.']

3. Let $\varphi: X \to Y$ be a continuous map and let γ be a class of paths in X from x_0 to x_1 . Prove that the following diagram is commutative:

$$\pi_1(X, x_0) \xrightarrow{\varphi_*} \pi_1(Y, \varphi(x_0))$$

$$\downarrow^v$$

$$\pi_1(X, x_1) \xrightarrow{\varphi_*} \pi_1(Y, \varphi(x_1))$$

The isomorphism u is defined by $u(\alpha) = \gamma^{-1}\alpha\gamma$ and v is defined similarly using $\varphi_*(\gamma)$ instead of γ . Note: A important special case occurs if $\varphi(x_0) = \varphi(x_1)$. Then, $\varphi_*(\gamma)$ is an element of the group $\pi_1(Y, \varphi(x_0))$.

4.	Show that if G is a topological group (a topological space with a group structure such that inversion and multiplication are continuous), then $\pi_1(G, 1)$ is abelian.

5. Prove that \mathbb{R}^2 and \mathbb{R}^n are not homeomorphic if $n \neq 2$. Hint: Consider the complement of a point in \mathbb{R}^2 or \mathbb{R}^n . You do not need to prove $\pi_1(S^n) = 0$ for $n \geq 2$.

*math: Let $\{U_i\}$ be an open covering of the space X having the following properties:

- (a) There exists $x_0 \in X$ such that $x_0 \in U_i$ for all i.
- (b) Each U_i is simply connected.
- (c) If $i \neq j$, then $U_i \cap U_j$ is path connected.

Prove that X is simply connected.

Hint: To prove that any loop $f: I \to X$ based at x_0 is trivial, consider the open covering $\{f^{-1}(U_i)\}\$ of the compact metric space I and use the Lebesgue number of this covering.

Remark: The two most important cases of this exercise are (1) a covering by two open sets and (2) when the sets U_i are linearly ordered by inclusion.

¹See page 48 of Massey for more on the Lebesgue number of coverings of intervals.

*math: Using the result of the previous exercise in the case that there is a covering consisting of two open sets, prove that the *n*-sphere, S^n , for $n \geq 2$ is simply connected.

everyone: How difficult was this assignment? How many hours did you spend on it?