Math 4081 HW\#2, due Wednesday 2/7/18
NAME:

1. Lee 3-4 $[\mathrm{SECOND}]=4-1[$ FIRST $]$.

Show that $T S^{1}$ is diffeomorphic to $S^{1} \times \mathbb{R}$.
2. Show that if M and N are smooth manifolds and if $p \in M$ and $q \in N$, then there is a canonical isomorphism

$$
T_{(p, q)}(M \times N)=T_{p} M \oplus T_{q} N
$$

Describe this isomorphism in terms of (a) derivations and (b) linear combinations of partial derivatives with respect to coordinate charts.

3. Lee 8-10 [SECOND]

Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive and let $F: M \rightarrow N$ be the map

$$
F(x, y)=\left(x y, \frac{y}{x}\right) .
$$

Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$ where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} ; \quad Y=y \frac{\partial}{\partial x}
$$

4. Lee 8-11 [SECOND] $=4-5[$ FIRST $]$

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$.
(a) $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$
(b) $Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$
(c) $Z=\left(x^{2}+y^{2}\right) \frac{\partial}{\partial x}$
5. Lee 8-16 [SECOND] $=4-11[$ FIRST $]$

For each of the following pairs of vector fields X, Y defined on \mathbb{R}^{3}, compute the Lie bracket $[X, Y]$.
(a) $X_{1}=y \frac{\partial}{\partial z}-2 x y^{2} \frac{\partial}{\partial y} ; \quad Y_{1}=\frac{\partial}{\partial y}$
(b) $X_{2}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} \quad Y_{2}=y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}$
(c) $X_{3}=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} ; \quad Y_{3}=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}$
6. How difficult was this assignment?

