Math 444/539 HW#1, due Wednesday 9/4/19

NAME:

1. Show that a space which is connected and locally path connected is path connected.

Recall that a subset A of a topological space X is called a *retract* of X if there exists a continuous map $r: X \to A$ (called a retraction) such that r(a) = a for any $a \in A$.

2. Prove that the relation "is a retract of" is transitive, i.e. if A is a retract of B and B is a retract of C, then A is a retract of C.

Definition: A subspace $A \subset X$ is called a **strong deformation retract** of X if there exists a homotopy $F: X \times I \to X$ such that

$$F(x,0) = x$$

$$F(x,1) \in A$$

$$F(a,t) = a \quad \text{for } a \in A \text{ and all } t \in I.$$

The subspace A is merely a **deformation retract** if the last equation holds only when t = 1.

3. Show that a deformation retract of a Hausdorff space must be a closed subset.

4. Give an example of a space which is connected but not path connected. Be sure to show that it is in fact connected but not path connected. *Hint: What can you do to the graph* $y = \sin\left(\frac{1}{x}\right)$? **DO NOT GOOGLE THIS.** *math: Prove that if A is a retract of a topological space $X, r: X \to A$ is a retraction, $i: A \hookrightarrow X$ is inclusion, and $i_*(\pi_1(A))$ is a normal subgroup of $\pi_1(X)$, then $\pi_1(X)$ is the direct product of the subgroup image i_* and kernel r_* .

everyone: How difficult was this assignment? How many hours did you spend on it? Indicate if you are math graduate student or not.