Math 444/539 HW#11, due Friday 12/6/19 NAME:

1. Lee 14.6 SECOND

Define a 2-form ω on \mathbb{R}^3 by

$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

- (b) Compute $d\omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the pullback $\iota_{S^2}^*\omega$ to S^2 , using coordinates (φ, θ) on the open subset where these coordinates are defined.
- (d) Show that $\iota_{S^2}^*\omega$ is nowhere zero.
- 2. Lee 14.7 SECOND

Let $M = \mathbb{R}^2$ and $N = \mathbb{R}^3$, $\omega = ydz \wedge dx$, and $F: M \to N$ is the smooth map defined by

$$F(\theta, \varphi) = ((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi).$$

Compute $d\omega$ and $F^*\omega$, and verify by direct computation that $F^*(d\omega) = d(F^*\omega)$.

3. Define a 1-form α on the punctured plane $\mathbb{R}^2 \setminus \{0\}$ by

$$\alpha = \left(\frac{-y}{x^2 + y^2}\right)dx + \left(\frac{x}{x^2 + y^2}\right)dy.$$

- (a) Calculate $\int_C \alpha$ for any circle C of radius r around the origin.
- (b) Prove that in the half plane $\{x>0\}$, α is the differential of a function.
- 4. Lee 16.10 SECOND

Let D denote the torus of revolution in \mathbb{R}^3 obtained by revolving the circle $(r-2)^2 + z^2 = 1$ around the z-axis (example 5.17), with its induced Riemannian metric and with the orientation determined by the outward unit normal.

- (a) Compute the surface area of D
- (b) Compute the integral over D of the 2-form $\omega = zdx \wedge dy$.

everyone: How difficult was this assignment? How many hours did you spend on it?