Math 444/539 HW\#10, due Monday 11/22/19 NAME:

1. Let M be a smooth manifold with a Riemannian metric $g: T M \otimes T M \rightarrow \mathbb{R}$. If $f: M \rightarrow \mathbb{R}$ is a smooth function, the gradient of f with respect to g is the vector field ∇f defined by

$$
d f=g(\nabla f, \cdot)
$$

(a) In local coordinates $\left\{x^{i}\right\}$, if $g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=g_{i j}$, explain how to compute ∇f in terms of $g_{i j}$ and $\partial f / \partial x^{i}$. Hint: See HW\#6.
(b) Let $f: M \rightarrow \mathbb{R}$ and let $p \in M$. Show that if $V \in T_{p} M$ satisfies $d f_{p}(V)>0$, then there exists a Riemannian metric g on M with $\nabla f(p)=V$.
2. Lee 11.9 [SECOND].

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the function

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the following map (which is the inverse of stereographic projection):

$$
F(u, v)=\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, \frac{u^{2}+v^{2}-1}{u^{2}+v^{2}+1}\right)
$$

Compute one of $F^{*} d f$ and $d(f \circ F)$, your choice. Verify with a classmate (who computed the other) that they are equal.
3. Lee 11-14 [SECOND].

Consider the following two covector fields on \mathbb{R}^{3}.

$$
\begin{aligned}
\omega & =-\frac{4 z}{\left(x^{2}+1\right)^{2}} d x+\frac{2 y}{y^{2}+1} d y+\frac{2 x}{x^{2}+1} d z \\
\eta & =-\frac{4 x z}{\left(x^{2}+1\right)^{2}} d x+\frac{2 y}{y^{2}+1} d y+\frac{2}{x^{2}+1} d z
\end{aligned}
$$

(a) Set up an evaluate the line integral of each covector field along the straight line segment from $(0,0,0)$ to $(1,1,1)$.
(b) Determine whether either of these covector fields is exact. As in multivariable calculus, a covector field α is exact whenever there exists a potential function f such that $d f=\alpha$.
(c) For each one that is exact, find a potential function and use it to recompute the line integral.

Note: This is a multivariable calculus problem in our fancy language, which will help us make sense of Chapter 16 and 17.
math* Lee 11.15 [Line Integrals of Vector Fields].
Let X be a smooth vector field on an open subset $U \subset \mathbb{R}$. Given a piecewise smooth curve segment $\gamma:[a, b] \rightarrow U$, define the line integral of X over γ,

$$
\int_{\gamma} X \cdot d s:=\int_{a}^{b} X_{\gamma(t)} \cdot \gamma^{\prime}(t) d t
$$

where the dot on the right-hand side denotes the Euclidean dot product between tangent vectors at $\gamma(t)$, identified with elements of \mathbb{R}^{n}. A conservative vector field is one whose line integral around every piecewise smooth closed curve is zero.
(a) Show that X is conservative if and only if there exists a smooth function $f \in C^{\infty}(U)$ such that $X=\operatorname{grad} f$. Hint: consider the covector field ω defined by $\omega_{x}(v)=X_{x} \cdot v$.
(b) Suppose $n=3$. Show that if X is conservative, then curl $X=0$, where

$$
\operatorname{curl} X=\left(\frac{\partial X^{3}}{\partial x^{2}}-\frac{\partial X^{2}}{\partial x^{3}}\right) \frac{\partial}{\partial x^{1}}+\left(\frac{\partial X^{1}}{\partial x^{3}}-\frac{\partial X^{3}}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(\frac{\partial X^{2}}{\partial x^{1}}-\frac{\partial X^{1}}{\partial x^{2}}\right) \frac{\partial}{\partial x^{3}} .
$$

(c) Show that if $U \subset \mathbb{R}^{3}$ is star-shaped, then X is conservative on U if and only if curl $X=0$.
everyone: How difficult was this assignment? How many hours did you spend on it?

