4. Calculating ds in a different coordinate system

Cylindrical polar coordinates are defined by

(a)
(b)
()
(d)

x = pcoso
= psing
z = z

Confirm that dx = dpcos ¢ — psin ¢pdo.
Calculate a similar expression for dy.
Starting from ds? = dz? + dy? + dz? show that ds? = dp? + p?d¢? + dz>.

Having warmed up with that calculation, repeat with spherical polar coordinates which are
defined by

x = rsinfcos¢
= rsin#sin¢
= rcosf

and show that ds?> = dr? + r2d6? + r? sin? d¢?.

Hint: The spherical result is easier to get starting from the cylindrical result and using
p=rsiné.

4. Solution: Calculating ds in a different coordinate system

(a)
(b)
()

This is a simple application of the product rule dx = dp cos ¢ — psin ¢pde.
dy = dpsin ¢ + pcos ¢do.

Now
dz* + dy? = (dpcos ¢ — psin ¢de)? + (dpsin ¢ + p cos pdp)?

The cross terms cancel so
dz® + dy? = dp*(cos® ¢ + sin’ ¢) + pdp*(sin ¢ + cos® ¢) = dp® + p*d¢?

Adding dz? gives the desired result.

Start with ds? = dp® + p?d¢? + dz>. Now p? = 2 sin? # and the product rule applied to dp
gives
dp = drsinf + r cos 0df

and also
dz = drcos@ — rsin 6df

Thus substituting into ds? from above gives
ds* = (drsin 6 + r cos 0d0)? + r? sin? 0d¢?® + (dr cos § — rsin 0dh)?
Once again the cross-terms cancel leaving
ds® = dr?(sin® 6 + cos? 0) 4 r%(cos? 0 + sin® 0)d6? + 2 sin” Odg?

which simplifies to the desired result ds? = dr? + r2d6? + r2 sin® 0d¢?.



5. Geodesics on the Sphere

The equation of a sphere in spherical polar coordinates is particularly simple: it is r = a, where
a is a constant.

(a)
(b)

(e)

(f)

Starting with ds in spherical polar coordinates, write down the simplified form of ds when
7 = a is a constant.

Use this expression for ds to write down an integral that represents the distance between
two points connected by a path that lies on the surface of a sphere. Write the integral in
the form where ¢ is a function of 6.
Write down a first integral for this integrand.
Show that
¢ — ¢o = sin"[a cot 6]
satisfies the first integral, where ¢y and « are two independent constants.
The equation of a plane through the origin is Az + By + Cz = 0. Rewrite this equation in

spherical polar coordinates. Rearrange the equation to make it look like the solution above
and find o and ¢q in terms of A, B and C.

Thus give a simple geometric description and method of finding geodesics on a sphere.

5. Solution: Geodesics on the Sphere

(a)

(b)

If r = a is a constant then
ds® = a’d0? + a*sin® 0 d? .

OB
I:/ds:a/ \/1+sin? 6 ¢'2d6 .
0a
Thus F(0, ¢, ¢') = /1 +sin? 0 ¢'2.

Since OF/0¢ = 0 a first integral is

The integral is

sin? 9 ¢/

77 _C
V1 +sin? 6 ¢

or

¢ =+ ¢ .
sin #/sin? 0 — C?
Direct differentiation and some algebra, yields the result.
In spherical coordinates this becomes
Arsinfcos ¢ + Brsinfsin¢ + Crcosf =0
The r cancels, the cos can be moved to the other side and both sides divided by sinf to
give

Acos¢p+ Bsing = —C cot 0

Trig identities can be used to rewrite the left hand side as

VA% + B?sin(¢ — ¢g) = —C cot 6

where ¢g = —tan~!(A/B) and a = —C// A2 + B2.

In other words, the curve with the shortest distance lies simultaneously on the surface of a
sphere AND on a plane through the origin. The intersection of such a plane and a sphere
is called a great circle.



