## 4. Calculating $d s$ in a different coordinate system

Cylindrical polar coordinates are defined by

$$
\begin{aligned}
& x=\rho \cos \phi \\
& y=\rho \sin \phi \\
& z=z
\end{aligned}
$$

(a) Confirm that $d x=d \rho \cos \phi-\rho \sin \phi d \phi$.
(b) Calculate a similar expression for $d y$.
(c) Starting from $d s^{2}=d x^{2}+d y^{2}+d z^{2}$ show that $d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2}$.
(d) Having warmed up with that calculation, repeat with spherical polar coordinates which are defined by

$$
\begin{aligned}
x & =r \sin \theta \cos \phi \\
y & =r \sin \theta \sin \phi \\
z & =r \cos \theta
\end{aligned}
$$

and show that $d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$.
Hint: The spherical result is easier to get starting from the cylindrical result and using $\rho=r \sin \theta$.

## 4. Solution: Calculating $d s$ in a different coordinate system

(a) This is a simple application of the product rule $d x=d \rho \cos \phi-\rho \sin \phi d \phi$.
(b) $d y=d \rho \sin \phi+\rho \cos \phi d \phi$.
(c) Now

$$
d x^{2}+d y^{2}=(d \rho \cos \phi-\rho \sin \phi d \phi)^{2}+(d \rho \sin \phi+\rho \cos \phi d \phi)^{2}
$$

The cross terms cancel so

$$
d x^{2}+d y^{2}=d \rho^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+\rho^{2} d \phi^{2}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=d \rho^{2}+\rho^{2} d \phi^{2}
$$

Adding $d z^{2}$ gives the desired result.
(d) Start with $d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2}$. Now $\rho^{2}=r^{2} \sin ^{2} \theta$ and the product rule applied to $d \rho$ gives

$$
d \rho=d r \sin \theta+r \cos \theta d \theta
$$

and also

$$
d z=d r \cos \theta-r \sin \theta d \theta
$$

Thus substituting into $d s^{2}$ from above gives

$$
d s^{2}=(d r \sin \theta+r \cos \theta d \theta)^{2}+r^{2} \sin ^{2} \theta d \phi^{2}+(d r \cos \theta-r \sin \theta d \theta)^{2}
$$

Once again the cross-terms cancel leaving

$$
d s^{2}=d r^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)+r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}
$$

which simplifies to the desired result $d s^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin ^{2} \theta d \phi^{2}$.

## 5. Geodesics on the Sphere

The equation of a sphere in spherical polar coordinates is particularly simple: it is $r=a$, where $a$ is a constant.
(a) Starting with $d s$ in spherical polar coordinates, write down the simplified form of $d s$ when $r=a$ is a constant.
(b) Use this expression for $d s$ to write down an integral that represents the distance between two points connected by a path that lies on the surface of a sphere. Write the integral in the form where $\phi$ is a function of $\theta$.
(c) Write down a first integral for this integrand.
(d) Show that

$$
\phi-\phi_{0}=\sin ^{-1}[\alpha \cot \theta]
$$

satisfies the first integral, where $\phi_{0}$ and $\alpha$ are two independent constants.
(e) The equation of a plane through the origin is $A x+B y+C z=0$. Rewrite this equation in spherical polar coordinates. Rearrange the equation to make it look like the solution above and find $\alpha$ and $\phi_{0}$ in terms of $A, B$ and $C$.
(f) Thus give a simple geometric description and method of finding geodesics on a sphere.

## 5. Solution: Geodesics on the Sphere

(a) If $r=a$ is a constant then

$$
d s^{2}=a^{2} d \theta^{2}+a^{2} \sin ^{2} \theta d \phi^{2} .
$$

(b) The integral is

$$
I=\int d s=a \int_{\theta_{A}}^{\theta_{B}} \sqrt{1+\sin ^{2} \theta \phi^{\prime 2}} d \theta .
$$

Thus $F\left(\theta, \phi, \phi^{\prime}\right)=\sqrt{1+\sin ^{2} \theta \phi^{\prime 2}}$.
(c) Since $\partial F / \partial \phi=0$ a first integral is

$$
\frac{\sin ^{2} \theta \phi^{\prime}}{\sqrt{1+\sin ^{2} \theta \phi^{\prime 2}}}=C
$$

or

$$
\phi^{\prime}= \pm\left(\frac{C}{\sin \theta \sqrt{\sin ^{2} \theta-C^{2}}}\right) .
$$

(d) Direct differentiation and some algebra, yields the result.
(e) In spherical coordinates this becomes

$$
A r \sin \theta \cos \phi+B r \sin \theta \sin \phi+C r \cos \theta=0
$$

The $r$ cancels, the $\cos \theta$ can be moved to the other side and both sides divided by $\sin \theta$ to give

$$
A \cos \phi+B \sin \phi=-C \cot \theta
$$

Trig identities can be used to rewrite the left hand side as

$$
\sqrt{A^{2}+B^{2}} \sin \left(\phi-\phi_{0}\right)=-C \cot \theta
$$

where $\phi_{0}=-\tan ^{-1}(A / B)$ and $\alpha=-C / \sqrt{A^{2}+B^{2}}$.
(f) In other words, the curve with the shortest distance lies simultaneously on the surface of a sphere AND on a plane through the origin. The intersection of such a plane and a sphere is called a great circle.

