1. Lee 14-6 [Second Edition]

Define a 2 -form ω on \mathbb{R}^{3} by

$$
\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y
$$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

$$
(x, y, z)=(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) .
$$

(b) Compute $d \omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3 -form.
(c) Compute the pullback $\iota_{S^{2}}^{*} \omega$ to S^{2}, using coordinates (φ, θ) on the open subset where these coordinates are defined.
(d) Show that $\iota_{S^{2}}^{*} \omega$ is nowhere zero.
2. Lee 14-7 [Second Edition]

Let $M=\mathbb{R}^{2}$ and $N=\mathbb{R}^{3}, \omega=y d z \wedge d x$, and $F: M \rightarrow N$ is the smooth map defined by

$$
F(\theta, \varphi)=((\cos \varphi+2) \cos \theta,(\cos \varphi+2) \sin \theta, \sin \varphi) .
$$

Compute $d \omega$ and $F^{*} \omega$. Observe that it is possible to verify by direct computation that $F^{*}(d \omega)=d\left(F^{*} \omega\right)$, but do not do so.
3. Check in local coordinates that if α is a 1-form and V and W are vector fields on M, then

$$
d \alpha(V, W)=V \alpha(W)-W \alpha(V)-\alpha([V, W])
$$

4. Lee 19-1 [Second Edition]

Show that a smooth distribution $D \subset T M$ is involutive if and only if $\mathcal{I}(D)$ is a differential ideal. (\Rightarrow) : Use Prop 14.32. (\Leftarrow) : Use Theorem 19.7.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

