1. Lee 14-6 [Second Edition] Define a 2-form ω on \mathbb{R}^3 by

 $\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy.$

(a) Compute ω in spherical coordinates (ρ, φ, θ) defined by

 $(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$

- (b) Compute $d\omega$ in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.
- (c) Compute the pullback $\iota_{S^2}^* \omega$ to S^2 , using coordinates (φ, θ) on the open subset where these coordinates are defined.
- (d) Show that $\iota_{S^2}^* \omega$ is nowhere zero.
- 2. Lee 14-7 [Second Edition]

Let $M = \mathbb{R}^2$ and $N = \mathbb{R}^3$, $\omega = ydz \wedge dx$, and $F: M \to N$ is the smooth map defined by

 $F(\theta,\varphi) = \left((\cos\varphi + 2)\cos\theta, (\cos\varphi + 2)\sin\theta, \sin\varphi \right).$

Compute $d\omega$ and $F^*\omega$. Observe that it is possible to verify by direct computation that $F^*(d\omega) = d(F^*\omega)$, but do not do so.

3. Check in local coordinates that if α is a 1-form and V and W are vector fields on M, then

$$d\alpha(V, W) = V\alpha(W) - W\alpha(V) - \alpha([V, W]).$$

4. Lee 19-1 [Second Edition]

Show that a smooth distribution $D \subset TM$ is involutive if and only if $\mathcal{I}(D)$ is a differential ideal. (\Rightarrow): Use Prop 14.32. (\Leftarrow): Use Theorem 19.7.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?