1. Lee 11-7 [Second Edition].

In the following subproblems, M and N are smooth manifolds, $F: M \rightarrow N$ is a smooth map, and ω is a covector field on N. Compute $F^{*} \omega$ in each case.
(a) $M=N=\mathbb{R}^{2}, F(s, t)=\left(s t, e^{t}\right)$,
$\omega=x d y-y d x$
(b) $M=\mathbb{R}^{2}$ and $N=\mathbb{R}^{3}, F(\theta, \varphi)=((\cos \varphi+2) \cos \theta,(\cos \varphi+2) \sin \theta, \sin \varphi)$,
$\omega=z^{2} d x$
2. Define a 1 -form α on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\alpha=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y .
$$

(a) Calculate $\int_{C} \alpha$ for any circle C of radius r around the origin.
(b) Prove that in the half plane $\{x>0\}, \alpha$ is the differential of a function.
3. Lee 11-14 [Second Edition]

Consider the following two 1 -forms on \mathbb{R}^{3}

$$
\begin{aligned}
\omega & =-\frac{4 z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 x d z}{x^{2}+1} \\
\eta & =-\frac{4 x z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 d z}{x^{2}+1}
\end{aligned}
$$

(a) Determine whether either of ω or η is exact.
(b) Set up and evaluate the line integral of each 1-form along the straight line segment from $(0,0,0)$ to $(1,1,1)$, OR, for each 1 -form that is exact, find a potential function and use it to recompute the line integral.
4. Lee 11-15 [Line Integrals of Vector Fields].

Let X be a smooth vector field on an open subset $U \subset \mathbb{R}$. Given a piecewise smooth curve segment $\gamma:[a, b] \rightarrow U$, define the line integral of X over γ,

$$
\int_{\gamma} X \cdot d s:=\int_{a}^{b} X_{\gamma(t)} \cdot \gamma^{\prime}(t) d t
$$

where the dot on the right-hand side denotes the Euclidean dot product between tangent vectors at $\gamma(t)$, identified with elements of \mathbb{R}^{n}. A conservative vector field is one whose line integral around every piecewise smooth closed curve is zero.
(a) Show that X is conservative if and only if there exists a smooth function $f \in C^{\infty}(U)$ such that $X=\operatorname{grad} f$. Hint: consider the covector field ω defined by $\omega_{x}(v)=X_{x} \cdot v$.
(b) Suppose $n=3$. Show that if X is conservative, then curl $X=0$, where

$$
\operatorname{curl} X=\left(\frac{\partial X^{3}}{\partial x^{2}}-\frac{\partial X^{2}}{\partial x^{3}}\right) \frac{\partial}{\partial x^{1}}+\left(\frac{\partial X^{1}}{\partial x^{3}}-\frac{\partial X^{3}}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(\frac{\partial X^{2}}{\partial x^{1}}-\frac{\partial X^{1}}{\partial x^{2}}\right) \frac{\partial}{\partial x^{3}} .
$$

(c) Show that if $U \subset \mathbb{R}^{3}$ is star-shaped, then X is conservative on U if and only if curl $X=0$.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

