This should be relatively straightforward once you get past the notation.

1. Lee Exercise 11.17 (page 280, SECOND)

Given polar (r, θ) and rectangular $(x:=r \cos \theta, y:=r \sin \theta)$ coordinates on \mathbb{R}^{2} we have that the coordinate vector fields transform, using Equation (11.4) on page 275, by

$$
\begin{aligned}
\frac{\partial}{\partial r} & =\frac{\partial x}{\partial r} \frac{\partial}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial}{\partial y} \\
\frac{\partial}{\partial \theta} & =\frac{\partial x}{\partial \theta} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial}{\partial y}
\end{aligned}
$$

for arbitrary coordinate transformations in any finite dimension. Using this fact, consider $f(x, y)=x^{2}$ on \mathbb{R}^{2} and let X be the vector field

$$
X=\operatorname{grad} f=2 x \frac{\partial}{\partial x}
$$

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are defined) using Equation (11.4) on page 275, and show that it is not equal to

$$
\frac{\partial f}{\partial r} \frac{\partial}{\partial r}+\frac{\partial f}{\partial \theta} \frac{\partial}{\partial \theta}
$$

Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinate-independent way as the components of a vector field. However, they can be interpreted as the components of a covector field. This is the most important application of covector fields.
2. (Linear Algebra Warm Up 1)

Let V and W be finite dimensional vector spaces and let $A: V \rightarrow W$ be a linear map. Show that the dual $\operatorname{map} A^{*}: W^{*} \rightarrow V^{*}$ is given in coordinates as follows. Let $\left\{e_{i}\right\}$ and $\left\{f_{j}\right\}$ be bases for V and W, and let $\left\{e^{i}\right\}$ and $\left\{f^{j}\right\}$ be the corresponding dual bases for V^{*} and W^{*}. If $A e_{i}=A_{i}^{j} f_{j}$ then $A^{*} f^{j}=A_{i}^{j} e^{i}$.
3. (Linear Algebra Warm Up 2)

Let V be a finite dimensional vector space and let $\langle\cdot, \cdot\rangle$ be an inner product on V. The inner product determines an isomorphism $\phi: V \rightarrow V^{*}$.
(a) Show that the isomorphism ϕ is given in coordinates as follows. Let $\left\{e_{i}\right\}$ be a basis for V, let $\left\{e^{i}\right\}$ be the dual basis, and write $g_{i j}=\left\langle e_{i}, e_{j}\right\rangle$. Then $\phi\left(e_{i}\right)=g_{i j} e^{j}$.
(b) The inner product, together with the isomorphism ϕ, define an inner product on V^{*}. Write this in coordinates as $g^{i j}=\left\langle e^{i}, e^{j}\right\rangle$. Show that the matrix $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right)$.
4. Let M be a smooth manifold with a Riemannian metric $g: T M \otimes T M \rightarrow \mathbb{R}$. If $f: M \rightarrow \mathbb{R}$ is a smooth function, the gradient of f with respect to g is the vector field ∇f defined by

$$
d f=g(\nabla f, \cdot)
$$

(a) In local coordinates $\left\{x^{i}\right\}$, if $g\left(\partial / \partial x^{i}, \partial / \partial x^{j}\right)=g_{i j}$, explain how to compute ∇f in terms of $g_{i j}$ and $\partial f / \partial x^{i}$. Hint: This should fall out of the preceding two linear algebra warm ups.
(b) Let $f: M \rightarrow \mathbb{R}$ and let $p \in M$. Show that if $V \in T_{p} M$ satisfies $d f_{p}(V)>0$, then there exists a Riemannian metric g on M with $\nabla f(p)=V$.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

