Math 451 HW # 7, due Friday 10/21 /22 NAME:

This should be relatively straightforward once you get past the notation.

1. Lee Exercise 11.17 (page 280, SECOND)
Given polar (r,6) and rectangular (z := rcosf,y := rsinf) coordinates on R? we have that the coordinate
vector fields transform, using Equation (11.4) on page 275, by
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for arbitrary coordinate transformations in any finite dimension. Using this fact, consider f(z,y) = 2 on

R? and let X be the vector field

X = grad f = 2$g
ox

Compute the coordinate expression of X in polar coordinates (on some open subset on which they are
defined) using Equation (11.4) on page 275, and show that it is not equal to
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Takeaway: The partial derivatives of a smooth function cannot be interpreted in a coordinate-independent

way as the components of a vector field. However, they can be interpreted as the components of a covector
field. This is the most important application of covector fields.

2. (Linear Algebra Warm Up 1)
Let V and W be finite dimensional vector spaces and let A : V' — W be a linear map. Show that the dual
map A* : W* — V* is given in coordinates as follows. Let {e;} and {f;} be bases for V and W, and let {e’}

and {f’} be the corresponding dual bases for V* and W*. If Ae; = A? f; then A*f/ = Ale'.

3. (Linear Algebra Warm Up 2)
Let V' be a finite dimensional vector space and let (-,-) be an inner product on V. The inner product
determines an isomorphism ¢ : V. — V*.

(a) Show that the isomorphism ¢ is given in coordinates as follows. Let {e;} be a basis for V, let {e’} be
the dual basis, and write g;; = (e;, ;). Then ¢(e;) = gije’.
(b) The inner product, together with the isomorphism ¢, define an inner product on V*. Write this in

coordinates as g = (%, e’). Show that the matrix (¢%/) is the inverse of the matrix (g;;).

4. Let M be a smooth manifold with a Riemannian metric g : TM ® TM — R. If f : M — R is a smooth
function, the gradient of f with respect to g is the vector field V f defined by

df = g(Vf,-).

(a) In local coordinates {z'}, if g(0/0x", 8/027) = g;;, explain how to compute Vf in terms of g;; and
df/0xt. Hint: This should fall out of the preceding two linear algebra warm ups.

(b) Let f : M — R and let p € M. Show that if V € T,M satisfies df,(V) > 0, then there exists a
Riemannian metric g on M with Vf(p) =V.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?



