1. Lee 8-16 [Second Edition]

For each of the following pairs of vector fields X, Y defined on \mathbb{R}^3 , compute the Lie bracket [X,Y].

(a)
$$X_1 = y \frac{\partial}{\partial z} - 2xy^2 \frac{\partial}{\partial y}$$
 $Y_1 = \frac{\partial}{\partial y}$

(b)
$$X_2 = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$$
 $Y_2 = y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y}$

Brute force computation is perhaps less enjoyable than remembering what the Lie Bracket of two vector fields encodes.

2. Lee 7-2 [Second Edition]

Let G be a Lie group.

(a) Let $m: G \times G \to G$ denote the multiplication map. If needed you can assume that m is a smooth submersion. Using Prop 3.14 to identify $T_{(e,e)}(G \times G)$ with $T_eG \oplus T_eG$, show that the differential $dm_{(e,e)}: T_eG \oplus T_eG \to T_eG$ is given by

$$dm_{(e,e)}(X,Y) = X + Y$$

Hint: compute $dm_{(e,e)}(X,0)$ and $dm_{(e,e)}(0,Y)$ separately.

- (b) Let $i: G \to G$ denote the inversion map. Show that $di_e: T_eG \to T_eG$ is given by $di_e(X) = -X$.
- 3. Lee 7-11 [Second Edition]

Considering \mathbb{S}^{2n+1} as the unit sphere in \mathbb{C}^{n+1} , define an action of \mathbb{S}^1 on \mathbb{S}^{2n+1} , called the **Hopf action**, by

$$z \cdot (w^1, ..., w^{n+1}) = (zw^1, ..., zw^{n+1}).$$

Show that this action is smooth and its orbits are disjoint unit circles in \mathbb{C}^{n+1} whose union is \mathbb{S}^{2n+1} .

4. Lee 7-16 [Second Edition]

Prove that SU(2) is diffeomorphic to \mathbb{S}^3 .