1. Lee 8-10 [Second Edition]

Let M be the open submanifold of \mathbb{R}^{2} where both x and y are positive and let $F: M \rightarrow M$ be the map

$$
F(x, y)=\left(x y, \frac{y}{x}\right) .
$$

Show that F is a diffeomorphism, and compute $F_{*} X$ and $F_{*} Y$ where

$$
X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} ; \quad Y=y \frac{\partial}{\partial x}
$$

Note: The definition of the pushforward yields $\left(F_{*} Z\right)_{(s, t)}=d F_{F^{-1}(s, t)} Z_{F^{-1}(s, t)}$.
2. Lee 8-11 [Second Edition]

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x>0\right\}$.

$$
\text { (b) } \quad X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
$$

(a) $Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$
3. Lee 9-3 [Second Edition]

Compute the flow of each of the following vector fields on \mathbb{R}^{2} :
(a) $X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$
(b) $Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}$
4. Lee [Second Edition]

Define vector fields X and Y on the plane as in (1) by

$$
X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} \quad Y=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}
$$

Recall that you just computed the flows ϕ and ψ of X and Y in the previous problem. Now verify that the flows do not commute by finding explicit open intervals I and J containing 0 such that $\phi_{s} \circ \psi_{t}$ and $\psi_{t} \circ \phi_{s}$ are both defined for all $(s, t) \in I \times J$, but they are unequal for some such (s, t).

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

