1. Lee 8-10 [Second Edition] Let M be the open submanifold of \mathbb{R}^2 where both x and y are positive and let $F: M \to M$ be the map

 $F(x,y) = \left(xy, \frac{y}{x}\right).$

Show that F is a diffeomorphism, and compute F_*X and F_*Y where

$$X = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}; \qquad Y = y\frac{\partial}{\partial x}$$

Note: The definition of the pushforward yields $(F_*Z)_{(s,t)} = dF_{F^{-1}(s,t)}Z_{F^{-1}(s,t)}$.

2. Lee 8-11 [Second Edition]

For each of the following vector fields on the plane, compute its coordinate representation in polar coordinates on the right half-plane $\{(x, y) \in \mathbb{R}^2 \mid x > 0\}$.

(b)
$$X = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}$$

(a) $Y = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$

3. Lee 9-3 [Second Edition]

Compute the flow of each of the following vector fields on \mathbb{R}^2 :

(a)
$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}$$

(b) $Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}$

4. Lee [Second Edition]

Define vector fields X and Y on the plane as in (1) by

$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} \quad Y = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}$$

Recall that you just computed the flows ϕ and ψ of X and Y in the previous problem. Now verify that the flows do not commute by finding explicit open intervals I and J containing 0 such that $\phi_s \circ \psi_t$ and $\psi_t \circ \phi_s$ are both defined for all $(s,t) \in I \times J$, but they are unequal for some such (s,t).

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?