NAME:

1. (a) Suppose that $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear map and V is a vector subspace of \mathbb{R}^{n}. Check that $A \pitchfork V$ is equivalent to $A\left(\mathbb{R}^{k}\right)+V=\mathbb{R}^{n}$.
(b) If V and W are linear subspaces of \mathbb{R}^{n}, check that $V \pitchfork W$ is equivalent to $V+W=\mathbb{R}^{n}$.
2. For which values of R does the hyperboloid defined by $x^{2}+y^{2}-z^{2}=1$ intersect the sphere $x^{2}+y^{2}+z^{2}=R$ transversely? What does the intersection look like for different values of R ?
3. (Lee Second 6-9) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the map defined by

$$
F(x, y)=\left(e^{y} \cos x, e^{y} \sin x, e^{-y}\right)
$$

(a) For which positive numbers r is F transverse to the 2-sphere of radius $r, S_{r}(0) \subset \mathbb{R}^{3}$?
(b) For which positive numbers r is $F^{-1}\left(S_{r}(0)\right)$ an embedded submanifold of \mathbb{R}^{2} ?

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

