Pick 4 of the 6 problems to upload to gradescope.
($1,3,5$ and 6 are require little to no understanding of cohomology)

1. Lee 16-10 [Second Edition]

Let D denote the torus of revolution in \mathbb{R}^{3} obtained by revolving the circle $(r-2)^{2}+z^{2}=1$ around the z-axis (example 5.17), with its induced Riemannian metric and with the orientation determined by the outward unit normal.
(a) Compute the surface area of D
(b) Compute the integral over D of the 2-form $\omega=z d x \wedge d y$.

Plague Hint Guided Jones 11-10,
Suppose $0 \leq a \leq b$. Find the surface area of the torus obtained by revolving the circle $(x-b)^{2}+z^{2}=a^{2}$ in the $x z$-plane about the z-axis.
Suggestion: Show that the torus admits the parametrization $0 \leq \varphi, \theta \leq 2 \pi$ by

Figure 1: The hollow blue donut
2. A symplectic manifold is a smooth manifold M equipped with a nondegenerate closed 2-form ω. A closed nondegenerate 2 -form is said to be a symplectic form.
(a) Show that if there exists a symplectic form on a smooth manifold M, then $\operatorname{dim} M=2 n$.
(b) Show that the only sphere S^{n} which admits a symplectic form is S^{2}.

Hint: Use Stokes' theorem and the computation of the de Rham cohomology of S^{n}.
3. Lee 16-9 [Second Edition]

Let ω be the $(n-1)$-form on $\mathbb{R}^{n} \backslash\{0\}$

$$
\omega=|x|^{-n} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \ldots \wedge \widehat{d x^{i}} \wedge \ldots \wedge d x^{n}
$$

(a) Show that $\iota_{S^{n-1}}^{*} \omega$ is the Riemannian volume form of S^{n-1} with respect to the round metric and the standard orientation.
(b) Show that ω is closed but not exact on $\mathbb{R}^{n} \backslash\{0\}$.
4. For each $n \geq 1$, compute the de Rham cohomology groups of $\mathbb{R}^{n} \backslash\left\{e_{1},-e_{1}\right\}$ and for each nonzero cohomology group, give specific differential forms whose cohomology classes form a basis.
5. Note: You may find HW \# 10, problem 3 helpful, as it concerns the Hodge star operator, which is the homomorphism $*: \Lambda^{k} T^{*} M \rightarrow \Lambda^{n-k} T^{*} M$ satisfying

$$
\omega \wedge * \eta=\langle\omega, \eta\rangle_{g} d V_{g} .
$$

In c) and d) take \mathbb{R}^{n} to be a Riemannian manifold equipped with the Euclidean metric (e.g. inner product) and the standard orientation.
(a) Show that $*: \Lambda^{0} T^{*} M \rightarrow \Lambda^{n} T^{*} M$ is given by $* f=f d V_{g}$
(b) Show that $* * \omega=(-1)^{k(n-k)} \omega$ if $\omega \in \Omega^{k}(M)$.
(c) Calculate $* d x^{i}$ for $i=1, \ldots, n$
(d) Calculate $*\left(d x^{i} \wedge d x^{j}\right)$ in the case when $n=4$.
6. Lee 17-1 second

Let M be a smooth manifold with or without boundary, and let $\omega \in \Omega^{p}(M), \eta \in \Omega^{q}(M)$ be closed forms. Show that the deRham cohomology class of $\omega \wedge \eta$ depends only on the cohomology classes of ω and η, and thus there is a well-defined bilinear map

$$
\cup: H_{\mathrm{dR}}^{p}(M) \times H_{\mathrm{dR}}^{q}(M) \rightarrow H_{\mathrm{dR}}^{p+q}(M),
$$

called the cup product given by $[\omega] \cup[\eta]=[\omega \wedge \eta]$.

* What were your favorite topics this semester?

