Math 451 HW # 11, due Friday 12/2/22 NAME:

Pick 4 of the 6 problems to upload to gradescope.

(1, 3, 5 and 6 are require little to no understanding of cohomology)

1. Lee 16-10 [Second Edition]

Let D denote the torus of revolution in \mathbb{R}^3 obtained by revolving the circle $(r-2)^2 + z^2 = 1$ around the z-axis (example 5.17), with its induced Riemannian metric and with the orientation determined by the outward unit normal.

- (a) Compute the surface area of D
- (b) Compute the integral over D of the 2-form $\omega = zdx \wedge dy$.

Plague Hint Guided Jones 11-10, 💥 d'oh

Suppose $0 \le a \le b$. Find the surface area of the torus obtained by revolving the circle $(x-b)^2+z^2=a^2$ in the *xz*-plane about the *z*-axis.

Suggestion: Show that the torus admits the parametrization $0 \le \varphi, \theta \le 2\pi$ by

Figure 1: The hollow blue donut

- 2. A symplectic manifold is a smooth manifold M equipped with a nondegenerate closed 2-form ω . A closed nondegenerate 2-form is said to be a symplectic form.
 - (a) Show that if there exists a symplectic form on a smooth manifold M, then dim M = 2n.
 - (b) Show that the only sphere Sⁿ which admits a symplectic form is S².
 Hint: Use Stokes' theorem and the computation of the de Rham cohomology of Sⁿ.
- 3. Lee 16-9 [Second Edition] Let ω be the (n-1)-form on $\mathbb{R}^n \setminus \{0\}$

$$\omega = |x|^{-n} \sum_{i=1}^{n} (-1)^{i-1} x^i \ dx^1 \wedge \ldots \wedge \widehat{dx^i} \wedge \ldots \wedge dx^n.$$

- (a) Show that $\iota_{S^{n-1}}^*\omega$ is the Riemannian volume form of S^{n-1} with respect to the round metric and the standard orientation.
- (b) Show that ω is closed but not exact on $\mathbb{R}^n \setminus \{0\}$.
- 4. For each $n \ge 1$, compute the de Rham cohomology groups of $\mathbb{R}^n \setminus \{e_1, -e_1\}$ and for each nonzero cohomology group, give specific differential forms whose cohomology classes form a basis.

5. Note: You may find HW # 10, problem 3 helpful, as it concerns the Hodge star operator, which is the homomorphism $* : \Lambda^k T^* M \to \Lambda^{n-k} T^* M$ satisfying

$$\omega \wedge *\eta = \langle \omega, \eta \rangle_g \ dV_g$$

In c) and d) take \mathbb{R}^n to be a Riemannian manifold equipped with the Euclidean metric (e.g. inner product) and the standard orientation.

- (a) Show that $*: \Lambda^0 T^* M \to \Lambda^n T^* M$ is given by $*f = f dV_q$
- (b) Show that $**\omega = (-1)^{k(n-k)}\omega$ if $\omega \in \Omega^k(M)$.
- (c) Calculate $*dx^i$ for i = 1, ..., n
- (d) Calculate $*(dx^i \wedge dx^j)$ in the case when n = 4.
- 6. Lee 17-1 second

Let M be a smooth manifold with or without boundary, and let $\omega \in \Omega^p(M)$, $\eta \in \Omega^q(M)$ be closed forms. Show that the deRham cohomology class of $\omega \wedge \eta$ depends only on the cohomology classes of ω and η , and thus there is a well-defined bilinear map

$$\cup: H^p_{\mathrm{dR}}(M) \times H^q_{\mathrm{dR}}(M) \to H^{p+q}_{\mathrm{dR}}(M),$$

called the **cup product** given by $[\omega] \cup [\eta] = [\omega \land \eta]$.

* What were your favorite topics this semester?