1. Let M be a smooth manifold and $\alpha \in \Omega^{1}(M)$.
(a) Show that a smooth distribution $\xi=\operatorname{ker} \alpha$ is maximally (e.g. nowhere) nonintegrable whenever $\left.d \alpha\right|_{\xi}$ is nondegenerate. Remark: A maximally nonintegrable hyperplane distribution ξ is called a contact structure and its defining 1-form α is called a contact form. (Hint: Use $H W$ \#9 (3))
(b) Show that if M admits a maximally nonintegrable hyperplane distribution then M must be odd dimensional.
(c) Let $\operatorname{dim} M=2 n+1$. Show that nondegeneracy of $\left.d \alpha\right|_{\xi}$ is equivalent to the condition that $\alpha \wedge(d \alpha)^{n}$ is a volume form.
(d) A contact form α uniquely determines a Reeb vector field R_{α} by the equations

$$
\iota\left(R_{\alpha}\right) d \alpha=0, \quad \alpha\left(R_{\alpha}\right)=1
$$

What is the geometric interpretation of each of these equations? Compute $\mathcal{L}_{R_{\alpha}} \alpha$ and deduce that the flow of R_{α} preserves the form α and hence the contact structure ξ.
2. Let X, Y be vector fields on a smooth manifold M that are pointwise linearly independent and $[X, Y]=$ $3 X-2 Y$. For all $p \in M$, does there exist a submanifold through p with tangent space spanned by $\{X, Y\}$?
3. Lee 16-18 a, b, c [SECOND]

Let (M, g) be an oriented Riemannian n-manifold. This problem outlines an important generalization of the operator

$$
*: C^{\infty}(M) \rightarrow \Omega^{n}(M):
$$

(a) For each $k=1, \ldots, n$, show that g determines a unique inner product on on $\Lambda^{k}\left(T_{p}^{*} M\right)$ (denoted by $\langle\cdot, \cdot,\rangle_{g}$ just like the inner product on $T_{p} M$) satisfying

$$
\left\langle\omega^{1} \wedge \ldots \wedge \omega^{k}, \eta^{1} \wedge \ldots \wedge \eta^{k}\right\rangle_{g}=\operatorname{det}\left(\left\langle\left(\omega^{i}\right)^{\#},\left(\eta^{j}\right)^{\#}\right\rangle_{g}\right)
$$

whenever $\omega^{1}, \ldots, \omega^{k}, \eta^{1}, \ldots, \eta^{k}$ are covectors at p. Hint given in Lee 16-18 (a).
(b) Show that the Riemannian volume form $d V_{g}$ is the unique positively oriented n-form that has unit norm with respect to this inner product.
(c) For each $k=0, \ldots, n$ show that there is a unique smooth bundle homomorphism

$$
: \Lambda^{k} T^{} M \rightarrow \Lambda^{n-k} T^{*} M
$$

satisfying

$$
\omega \wedge * \eta=\langle\omega, \eta\rangle_{g} d V_{g}
$$

for all smooth k-forms ω, η. (For $k=0$, interpret the inner product as ordinary multiplication.) This map is called the Hodge star operator. Hint given in Lee 16-18 (c).

* Optional: Let (M, g) be an oriented Riemannian manifold and X a smooth vector field on M. Show that

$$
\begin{aligned}
\iota_{X} d V_{g} & =* X^{b} \\
\operatorname{div} X & =* d * X^{b}
\end{aligned}
$$

and, when $\operatorname{dim} M=3$,

$$
\operatorname{curl} X=\left(* d X^{b}\right)^{\sharp}
$$

Note that the explanation of the curl operator appears on pages 426-427 of Lee SECOND.

* Which problems provided a worthwhile learning experience? How many hours did you spend on it?

