Math 222 in class problems Week: March 22, 2021 Name:

- 1. Let C be the circle formed by intersecting the plane x + z = 1 with the sphere $x^2 + y^2 + z^2 = 1$. Find a parametrization of C.
- 2. Find the arclength of $\mathbf{r}(t) = (\ln t, 2t, t^2), t \in [1, e]$. (Folland: e^2)
- 3. Compute $\int_C \sqrt{z} ds$, where C is parametrized by $\mathbf{r}(t) = (2\cos t, 2\sin t, t^2), 0 \le t \le 2\pi$. (Folland: $\frac{2}{3}[(1+4\pi^2)^{3/2}-1])$
- 4. Find the work done by the vector field $F(x, y, z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle$ along the line segment starting at (0, 0, 1) and ending at (2, 1, 0)
- 5. On HW 7: Jones 12.E, 12-7 Define a 1-form α on the punctured plane $\mathbb{R}^2 \setminus \{0\}$ by

$$\alpha = \left(\frac{-y}{x^2 + y^2}\right)dx + \left(\frac{x}{x^2 + y^2}\right)dy.$$

- (a) Calculate $\int_C \alpha$ for any circle C of radius R around the origin.
- (b) Prove that in the half plane $\{x > 0\}$, α is the differential of a function.
- 6. Match the equations of vector fields with their graphs. Determine which vector fields in 11-18 are conservative, and for the ones which are, find their potential functions.

11–14 Match the vector fields F with the plots labeled I–IV. Give reasons for your choices.

3

11.
$$F(x, y) = \langle x, -y \rangle$$

12. $F(x, y) = \langle y, x - y \rangle$
13. $F(x, y) = \langle y, y + 2 \rangle$

14.
$$\mathbf{F}(x, y) = \langle \cos(x + y), x \rangle$$

3

-3

3

-3

I

III

 15–18 Match the vector fields \mathbf{F} on \mathbb{R}^3 with the plots labeled I–IV. Give reasons for your choices.

15. $\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ **16.** $\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} + z\mathbf{k}$ **17.** $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + 3\mathbf{k}$

18. F(x, y, z) = x i + y j + z k

