Math 222 in class problems

1. Let C be the circle formed by intersecting the plane $x+z=1$ with the sphere $x^{2}+y^{2}+z^{2}=1$. Find a parametrization of C.
2. Find the arclength of $\mathbf{r}(t)=\left(\ln t, 2 t, t^{2}\right), t \in[1, e]$. (Folland: $\left.e^{2}\right)$
3. Compute $\int_{C} \sqrt{z} d s$, where C is parametrized by $\mathbf{r}(t)=\left(2 \cos t, 2 \sin t, t^{2}\right), 0 \leq t \leq 2 \pi$. (Folland: $\frac{2}{3}\left[\left(1+4 \pi^{2}\right)^{3 / 2}-\right.$ 1])
4. Find the work done by the vector field $F(x, y, z)=\left\langle y^{2}, 2 x y+e^{3 z}, 3 y e^{3 z}\right\rangle$ along the line segment starting at $(0,0,1)$ and ending at $(2,1,0)$
5. On HW 7: Jones 12.E, 12-7

Define a 1 -form α on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ by

$$
\alpha=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y
$$

(a) Calculate $\int_{C} \alpha$ for any circle C of radius R around the origin.
(b) Prove that in the half plane $\{x>0\}, \alpha$ is the differential of a function.
6. Match the equations of vector fields with their graphs. Determine which vector fields in 11-18 are conservative, and for the ones which are, find their potential functions.

11-14 Match the vector fields F with the plots labeled I-IV. Give reasons for your choices.
11. $\mathbf{F}(x, y)=\langle x,-y\rangle$
12. $\mathbf{F}(x, y)=\langle y, x-y\rangle$
13. $\mathbf{F}(x, y)=\langle y, y+2\rangle$
14. $\mathbf{F}(x, y)=\langle\cos (x+y), x\rangle$

15-18 Match the vector fields \mathbf{F} on \mathbb{R}^{3} with the plots labeled I-IV. Give reasons for your choices.
15. $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$
16. $\mathbf{F}(x, y, z)=\mathbf{i}+2 \mathbf{j}+z \mathbf{k}$
17. $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+3 \mathbf{k}$
18. $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$

