Math 222 in class problems

Week: February 8, 2021

1. Problem 8-1: Jones

Consider the "parallelogram" in \mathbb{R}^{3} with "edges" equal to the three points $\mathbf{i}, \mathbf{j}, \mathbf{i}-2 \mathbf{j}$. Draw a sketch of it and conclude that it is actually a six-sided figure in the $x y$-plane.
2. Problem 8-2: Jones

Compute the area of the triangle in \mathbb{R}^{3} whose vertices are $a \mathbf{i}, b \mathbf{j}, c \mathbf{k}$.
Optional: Express the result in a form that is a symmetric function of a, b, c.
Hint for \#2:
EXAMPLE. We find the area of the triangle in \mathbb{R}^{3} with vertices $\vec{\imath}, \vec{\jmath}, \vec{k}$. We handle this by finding the area of an associated parallelogram and then dividing by 2 (really, 2!). A complication appears because we do not have the origin of \mathbb{R}^{3} as a vertex, but we get around this by thinking of vectors emanating from one of the vertices (say $\vec{\jmath}$) thought of as the origin. Thus we take

$$
x_{1}=\vec{\imath}-\vec{\jmath}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \quad x_{2}=\vec{k}-\vec{\jmath}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) .
$$

Then the square of the area of the parallelogram is

$$
\begin{aligned}
\operatorname{det}\left(x_{i} \bullet x_{j}\right) & =\operatorname{det}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \\
& =3 .
\end{aligned}
$$

Thus,

$$
\text { area of triangle }=\frac{1}{2} \sqrt{3}
$$

Figure 1: Example on Jones 8-4

