1. (Similar to HW \#9) Use Stokes' theorem to evaluate $\int_{C} F \cdot \mathbf{d r}$ where $F(x, y, z)=\left\langle-y^{2}, x, z^{2}\right\rangle$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. Orient C to be counterclockwise when viewed from above. (Answer: π)
2. Use Stokes' theorem to compute $\iint_{S} \operatorname{curl} F \cdot n d S$ where $F(x, y, z)=\langle x z, y z, x y\rangle$ and S is the portion of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane. (The answer is 0 .)
3. Jones Problem 13-6

Let m be a fixed real number and let γ be the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the plane $z=m x$. Assume the curve has counterclockwise orientation as viewed from above, e.g. viewed from $(0,0, r)$ for large positive r. Compute directly the line integral $\int_{\gamma} y d z$. Also compute the same line integral using Stokes' theorem. (Answer: $-\pi m^{3} / 4$.)
4. Let C_{r} denote the circle of radius r about the origin in the $x z$-plane, oriented counterclockwise as viewed from the positive y-axis. Suppose F is a C^{1} vector field on the complement of the y-axis in \mathbb{R}^{3} such that $\int_{C_{1}} F \cdot \mathbf{d x}=5$ and curl $F(x, y z)=3 \mathbf{j}+\frac{z \mathbf{i}-x \mathbf{k}}{\left(x^{2}+z^{2}\right)^{2}}$. Compute $\int_{C_{r}} F \cdot \mathbf{d x}$ for every r. (Answer: $5+3 \pi\left(r^{2}-1\right)$.)
5. Is there a vector field F on \mathbb{R}^{3} such that curl $F=\langle x \sin y, \cos y, z-x y\rangle$?
6. Show that

$$
\operatorname{div}(F \times G)=G \cdot \operatorname{curl} F-F \cdot \operatorname{curl} G
$$

