Math 222 in class problems Week: April 12, 2021 Name:

- 1. (Similar to HW #9) Use Stokes' theorem to evaluate $\int_C F \cdot \mathbf{dr}$ where $F(x, y, z) = \langle -y^2, x, z^2 \rangle$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. Orient C to be counterclockwise when viewed from above. (Answer: π)
- 2. Use Stokes' theorem to compute $\iint_S \operatorname{curl} F \cdot n \, dS$ where $F(x, y, z) = \langle xz, yz, xy \rangle$ and S is the portion of the sphere $x^2 + y^2 + z^2 = 4$ that lies inside the cylinder $x^2 + y^2 = 1$ and above the xy-plane. (The answer is 0.)
- 3. Jones Problem 13-6

Let *m* be a fixed real number and let γ be the curve of intersection of the paraboloid $z = x^2 + y^2$ and the plane z = mx. Assume the curve has counterclockwise orientation as viewed from above, e.g. viewed from (0, 0, r) for large positive *r*. Compute directly the line integral $\int_{\gamma} y \, dz$. Also compute the same line integral using Stokes' theorem. (Answer: $-\pi m^3/4$.)

- 4. Let C_r denote the circle of radius r about the origin in the xz-plane, oriented counterclockwise as viewed from the positive y-axis. Suppose F is a C^1 vector field on the complement of the y-axis in \mathbb{R}^3 such that $\int_{C_1} F \cdot \mathbf{dx} = 5$ and curl $F(x, yz) = 3\mathbf{j} + \frac{z\mathbf{i} x\mathbf{k}}{(x^2 + z^2)^2}$. Compute $\int_{C_r} F \cdot \mathbf{dx}$ for every r. (Answer: $5 + 3\pi(r^2 1)$.)
- 5. Is there a vector field F on \mathbb{R}^3 such that curl $F = \langle x \sin y, \cos y, z xy \rangle$?
- 6. Show that

$$\operatorname{div} (F \times G) = G \cdot \operatorname{curl} F - F \cdot \operatorname{curl} G.$$