Math 222 in class problems

1. Find a parametrization for each of the following surfaces (hint: use an angular variable).
(a) The surface obtained by revolving the curve $z=f(x), a<x<b$ in the $x z$-plane around the z-axis, $a>0$.
(b) The surface obtained by revolving $z=f(x), a<x<b$ in the $x z$-plane around the x-axis, $f(x)>0$.
(c) The lower sheet of the hyperboloid $z^{2}-2 x^{2}-y^{2}=1$.
(d) The cylinder $x^{2}+z^{2}=9$.
2. For each of the following maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, describe the (possibly singular) surface $S=f\left(\mathbb{R}^{2}\right)$ and find a description of S as the locus of an equation $F(x, y, z)=0$. Find the points where $\partial_{u} f$ and $\partial_{v} f$ are linearly dependent, and describe the singularities of S (if any) at these points.
(a) $f(u, v)=(2 u+v, u-v, 3 v)$
(b) $f(u, v)=(a u \cos v, b u \sin v, u)$ with $a, b>0$
(c) $f(u, v)=\left(u \cos v, u \sin v, u^{2}\right)$
3. Find the a surface parametrization of the cap cut from the sphere $x^{z}+y^{2}+z^{2}=4$ by the cone $z=\sqrt{x^{2}+y^{2}}$ in terms of two variables. Give bounds on the two variables. Compute the surface area of said cap.
4. Find the surface area of the part of the paraboloid $z=x^{2}+y^{2}$ inside the cylinder $x^{2}+y^{2}=a^{2}$
5. On HW \# 9: Find the surface area of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. You should include a computation of why the surface area of a sphere of radius R is $4 \pi R^{2}$.
6. Match the parametric equations with the surfaces.

13-18 Match the equations with the graphs labeled I-VI and give reasons for your answers. Determine which families of grid curves have u constant and which have v constant.
13. $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k}$
14. $\mathbf{r}(u, v)=u v^{2} \mathbf{i}+u^{2} v \mathbf{j}+\left(u^{2}-v^{2}\right) \mathbf{k}$
15. $\mathbf{r}(u, v)=\left(u^{3}-u\right) \mathbf{i}+v^{2} \mathbf{j}+u^{2} \mathbf{k}$
16. $x=(1-u)(3+\cos v) \cos 4 \pi u$,
$y=(1-u)(3+\cos v) \sin 4 \pi u$,
$z=3 u+(1-u) \sin v$
17. $x=\cos ^{3} u \cos ^{3} v, \quad y=\sin ^{3} u \cos ^{3} v, \quad z=\sin ^{3} v$
18. $x=\sin u, \quad y=\cos u \sin v, \quad z=\sin v$

