1. Let C be positively oriented closed curve given by the rectangle with vertices $(0,0),(3,0),(3,4),(0,4)$. Evaluate

$$
\int_{C} y e^{x} d x+2 e^{x} d y
$$

A: $4 e^{3}-4$
2. Let C be the positively oriented closed curve given by the circle $x^{2}+y^{2}=4$. Evaluate

$$
\int_{C} y^{3} d x-x^{3} d y
$$

A: -24π
3. On HW \#8: Fleshing out Jones 12.D

Let $S=\{(x, y) \mid a \leq x \leq b, 0 \leq y \leq f(x)\}$, where f is a non-negative C^{1} function on $[a, b]$. Explain how the formula $A=-\int_{\partial S} y d x$ for the area of S in Folland 5.2 Example 3 (Prof Jo Slide 27) leads to the familiar formula $A=\int_{a}^{b} f(x) d x$. (Your argument should be self-contained, e.g. not require the grader to hunt through Jones' book.)
4. Jones Problem 12-4

Find the area enclosed by the curve $x^{4}+y^{4}=4 x y$ in the first quadrant.

Figure 1: $x^{4}+y^{4}=4 x y$
5. On HW \#8

Use Green's theorem as in Folland 5.2 Example 3 (Prof Jo Slide 27) to calculate the area under one arch of the cycloid described parametrically by $\mathbf{r}(t)=\langle R(t-\sin t), R(1-\cos t)\rangle$. (Folland: $3 \pi R^{2}$).

