Do 1-5 or 3-6. Prof Jo is happy to give hints on $\# 6$; please ask via a discussion in Canvas.

1. Compute $\int_{C}\left(y^{2} d x-2 x d y\right)$ where C is the triangle with vertices $(0,0),(1,0)$, and $(1,1)$, oriented counterclockwise (Folland: $-4 / 3$). Do so by (a) Directly parametrizing C; (b) Green's theorem.
2. Compute $\int_{C} F \cdot d \mathbf{x}$, where $F=\left(x^{2} y, x^{3} y^{2}\right)$ and C is the closed curve formed by portions of the line $y=4$ and the parabola $y=x^{2}$, oriented counterclockwise. Do not use Green's theorem. (Folland: $2\left(\frac{32}{5}+\frac{1024}{9}-\frac{32}{3}\right)$)
3. Jones Problem 11-1

Suppose $C \subset \mathbb{R}^{2}$ is a curve described in polar coordinates by an equation $r=g(\theta)$, where $a \leq \theta \leq b$. Show that the length of C is

$$
\int_{a}^{b} \sqrt{g^{\prime}(\theta)^{2}+g(\theta)^{2}} d \theta
$$

Suggestion: Using polar coordinates, we obtain a parametrization of $C: x(\theta)=g(\theta) \cos \theta, y(\theta)=g(\theta) \sin \theta$. Remark: This formula is usually written as

$$
\int_{a}^{b} \sqrt{\left(\frac{d r}{d \theta}^{2}+r^{2}\right)} d \theta
$$

4. Curves and Surfaces computation (made easier by Jones 11-1 if you convert to polar and use formula) Consider the logarithmic spiral $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by

$$
\mathbf{r}(t)=\left(a e^{b t} \cos t, a e^{b t} \sin t\right)
$$

with $a>0, b<0$. Compute the arc length function $S: \mathbb{R} \rightarrow \mathbb{R}$ where

$$
S(t)=\int_{t_{0}}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| d \tau
$$

for t_{0} corresponding to an arbitrary choice of $t_{0} \in \mathbb{R}$. Describe/sketch the curve.
5. Jones 12.E, 12-7

Define a 1-form α on the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ by $\alpha=\left(\frac{-y}{x^{2}+y^{2}}\right) d x+\left(\frac{x}{x^{2}+y^{2}}\right) d y$.
(a) Calculate $\int_{C} \alpha$ for any circle C of radius R around the origin.
(b) Prove that in the half plane $\{x>0\}, \alpha$ is the differential of a function.
6. Curves and Surfaces short proof

Let $\mathbf{r}: I \rightarrow \mathbb{R}^{3}$ be a C^{1} curve and $[a, b] \subset I$. Prove that

$$
|\mathbf{r}(a)-\mathbf{r}(b)| \leq \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

e.g. straight lines are the shortest curves joining two given points. Hooray!

Suggestion: First, prove that for any constant vector $u \in \mathbb{R}^{3}$, that

$$
\left\langle\int_{a}^{b} \mathbf{r}^{\prime}(t) d t, u\right\rangle \leq|u| \int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

Then use the Fundamental Theorem of Calculus after plugging in $u=\int_{a}^{b} \mathbf{r}^{\prime}(t) d t$ to the preceding inequality that you proved. Be careful with your inequalities and absolute values!

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?

