Math 222 HW#5, due Thursday 3/18/21 NAME:

If you elect to do the Folland proof (#1), you may omit solutions to #3 & #7 and receive full credit. Alternatively, you may elect to submit solutions to #2-7 and omit the proof of #1 to receive full credit.

- 1. Folland 4.2: Zero Content Proof. Let $f:[a,b] \to \mathbb{R}$ be an integrable function.
 - (a) Show that the graph of f in \mathbb{R}^2 has zero content.

Suggestion: Given a partition P of [a, b], interpret $s_P f - S_P f$ as a sum of areas of rectangles that cover the graph of f.

(b) Suppose $f \ge 0$, and let $S = \{(x, y) : x \in [a, b], 0 \le y \le f(x)\}$. Show that S is measurable, e.g. S is bounded and and its boundary ∂S has zero content in \mathbb{R}^2 , and that its area (which we more precisely defined in the zero content and theory handout) equals $\int_a^b f(x) dx$.

2. Stewart

Sketch the solid whose volume is given by the integral but DO NOT EVALUATE the integral.

(a)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2} \int_{0}^{r^{2}} r \, dz \, dr \, d\theta$$

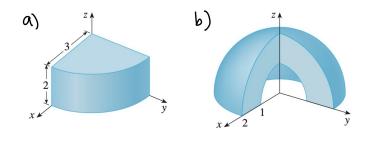
(b) $\int_{0}^{2} \int_{0}^{2\pi} \int_{0}^{r} r \, dz \, d\theta \, dr$

3. Stewart

Evaluate the integral by changing to cylindrical coordinates. Sketch the region of integration.

(a)
$$\int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \ dz \ dx \ dy$$

(b)
$$\int_{0}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{9-x^2-y^2} \sqrt{x^2+y^2} \ dz \ dy \ dx$$


4. Stewart

Sketch the solid whose volume is given by the integral but DO NOT EVALUATE the integral.

(a)
$$\int_0^{\pi/6} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi$$

(b)
$$\int_0^{\pi/4} \int_0^{2\pi} \int_0^{\sec \varphi} \rho^2 \sin \varphi \, d\rho \, d\theta \, d\varphi$$

5. Stewart

Set up the triple integral of an arbitrary continuous function f(x, y, z) in cylindrical or spherical coordinates over the solid region shown.

- 6. Folland, Jones Find the volume of the sphere $x^2 + y^2 + z^2 = 4$ lying above the plane z = 1.
- 7. Folland, Jones Find the volume of the region inside both the sphere $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 1$.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?