
Math 222 HW#4, due Sunday 3/7/21 NAME:

If you do the Folland Zero Content Proof (#1) you need not do #2 & #5 and you will still receive
full credit. Alternatively, if you do #2-6, you need not do the Folland Zero Content proof (#1) and
you will still receive full credit.

1. Folland Proof of Theorem 4.13 (Technical refinement of Theorem 4.12)
Prove that if f is bounded on [a, b] and the set of points in [a, b] at which f is discontinuous
has zero content, then f is integrable on [a, b].
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into one double integral. Then evaluate the double integral.

3. Stewart & Jones 9.G

(a) We define the improper integral (over the entire plane R2)
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where Da is the disk with radius a and center the origin. Show that∫ ∞
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(This is a fundamental result for probability and statistics).



4. Stewart & Jones 9.G Use the result of the previous exercise, part (c) to evaluate:
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5. Stewart & Jones
Use a triple integral to find the volume of the given solid. Also provide a sketch of the solid.

(a) The tetrahedron enclosed by the coordinate planes and the plane 2x+ y + z = 4

(b) The solid enclosed by the paraboloids y = x2 + z2 and y = 8− x2 − z2.

6. Stewart & Jones
Sketch the solid whose volume is given by the iterated integral. DO NOT EVALUATE!
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* Assignment Reflections
How difficult was this assignment? How many hours did you spend on it? Which problems
did you find to provide a worthwhile learning experience? Should I be assigning a similar
number of problems, fewer problems, or more problems in the future? Is there a good mix of
theory and computations?


