## Math 222 HW\#3, due Friday 2/26/21

NAME:

1. Problem 8-10: Jones

In the special case of an $n$-dimensional parallelogram $P$ with edges $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$, show that

$$
\operatorname{vol}_{n}(P)=\left|\operatorname{det}\left(x_{1} x_{2} \ldots x_{n}\right)\right|
$$

(There is a substantial hint/outline available on Canvas under Discussions)
2. Folland

Evaluate the following double integrals
(a) $\iint_{S}\left(x+3 y^{3}\right) d A, S=$ the upper half $y \geq 0$ of the unit disk $x^{2}+y^{2} \leq 1$
(b) $\iint_{S}\left(x^{2}-\sqrt{y}\right) d A, S=$ the region between the parabola $y=x^{2}$ and the line $x=2 y$.
3. Folland

Find the volume of the region above the triangle in the $x y$-plane with vertices $(0,0),(1,0)$, and $(0,1)$, and below the surface $z=6 x y(1-x-y)$.
4. Folland

For each of the following regions $S \subset \mathbb{R}^{2}$, express the double integral $\iint_{S} f d A$ in terms of iterated integrals in two different ways, e.g. find the limits of integration for $d A=d x d y$ and $d A=d y d x$. YOU DO NOT NEED TO EVALUATE THE INTEGRALS!
(a) $S=$ the region in the left half plane between the curve $y=x^{3}$ and the line $y=4 x$.
(b) $S=$ the triangle with vertices $(0,0),(2,2)$, and $(3,1)$.
(c) $S=$ the region between the parabolas $y=x^{2}$ and $y=6-4 x-x^{2}$.
5. Folland

Evaluate the following iterated integrals. (You may need to reverse the order of integration, in which case you must draw a labelled graph of the domain of integration).
(a) $\int_{1}^{3} \int_{1}^{y} y e^{2 x} d x d y$
(b) $\int_{0}^{1} \int_{\sqrt{x}}^{1} \cos \left(y^{3}+1\right) d y d x$
(c) $\int_{1}^{2} \int_{\frac{1}{x}}^{1} y e^{x y} d y d x$

## * Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?

