Math 222 HW\#2, due Thursday 2/11/21 NAME:

1. Problem 7-3: Jones (see book for hint/outline)

The Lagrange identity

$$
\|x\|^{2}\|y\|^{2}=(x \cdot y)^{2}+\|x \times y\|^{2}
$$

can be generalized. Using the outline Jones provides, prove that for $x, y, u, v \in \mathbb{R}^{3}$,

$$
(x \times y) \cdot(u \times v)=(x \cdot u)(y \cdot v)-(x \cdot v)(y \cdot u)
$$

2. Problem 7-7: Jones

In the definitions on page 9 under Chapter 7, D. Orientation, we have used the column vector representation of vectors. We may then write the corresponding $n \times n$ matrices

$$
\Phi=\left(\varphi_{1} \ldots \varphi_{n}\right), \Psi=\left(\psi_{1} \ldots \psi_{n}\right) .
$$

Prove that the frames have the same orientation if and only if $\operatorname{det} \Phi$ and $\operatorname{det} \Psi$ have the same sign. Please do each direction of the iff separately for the sake of the grader.
3. Problem 7-9: Jones

Prove that if $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ and $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ happen to be orthonormal frames, the matrix A in the second definition on page 9 under Chapter 7, D. Orientation is in $\mathrm{O}(n)$. Additionally prove that the frames have the same orientation if and only if $A \in \mathrm{SO}(n)$
4. Problem 7-13: Jones (in class problem)

Using the formula on page 12, e.g.

$$
R(\hat{w}, \theta)=(\hat{u} \hat{v} \hat{w})\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)(\hat{u} \hat{v} \hat{w})^{-1}
$$

show directly that

$$
R(\hat{w}, 0)=I
$$

Then give a heuristic explanation of this equation.
5. Prof Jo level trig (in class problem)

Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)
$$

Find \hat{w} and θ such that $=R(\hat{w}, \theta)$.

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?

