To earn full credit do \#1-5 or \#4-7. It should be shorter (and more pleasant) than HW 9.

1. Folland

Determine whether each of the following vector fields is the curl of a vector field F, and if so, find such an F.
(a) $G(x, y, z)=\left\langle x^{3}+y z, y-3 x^{2} y, 4 y^{2}\right\rangle$
(b) $G(x, y, z)=\langle x y+z, x z,-(y z+x)\rangle$
(c) $G(x, y, z)=\left\langle x e^{-x^{2} z^{2}}-6 x, 5 y+2 z, z-z e^{-x^{2} z^{2}}\right\rangle$
2. Stewart computation

Use the Divergence Theorem to calculate the surface integral $\iint_{S} F \cdot \mathbf{n} d S$; that is calculate the flux of F across S for

$$
F(x, y, z)=\left\langle 3 x y^{2}, x e^{z}, z^{3}\right\rangle
$$

and S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1, \& x=2$.
3. Folland computation

Use the Divergence Theorem to calculate the surface integral $\iint_{S} F \cdot \mathbf{n} d S$; that is calculate the flux of F across the ellipsoid $S:(x / a)^{2}+(y / b)^{2}+(z / c)^{2}=1$ for

$$
F(x, y, z)=\left\langle\frac{x}{a^{2}}, \frac{y}{b^{2}}, \frac{z}{c^{2}}\right\rangle
$$

4. Folland

Let $\mathbf{x}=(x, y, z)$ and $g(\mathbf{x})=|\mathbf{x}|^{-1}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
(a) Compute $\nabla g(\mathbf{x})$ for $\mathbf{x} \neq 0$.
(b) Show that $\nabla^{2} g(\mathbf{x})=\Delta g=\operatorname{div}(\operatorname{grad} g)=0$ for $\mathbf{x} \neq 0$.

Suggestion: To show this you may use the following fun fact (without proof) that for $\mathbf{x} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and a C^{2} function $F(\mathbf{x})=f(r)$ on $(0, \infty)$ with $r=|\mathbf{x}|$ that

$$
\nabla^{2} g \mathbf{x}=\frac{\partial^{2} F}{\partial x^{2}}+\ldots+\frac{\partial^{2} F}{\partial x^{2}}=f^{\prime \prime}(r)+(n-1) r^{-1} f^{\prime}(r)
$$

(c) Show by a direct calculation that $\iint_{S} \nabla g \cdot n d S=-4 \pi$ if S is any sphere centered at the origin.
(d) Since $\nabla^{2} g=\operatorname{div}(\operatorname{grad} g)$ why do (b) and (c) not contradict the Divergence theorem?
5. Folland (An amusing but rarely useful fact)

Let R be a regular region in \mathbb{R}^{3} with piecewise smooth boundary. Show that

$$
\operatorname{Volume}(R)=\frac{1}{3} \iint_{\partial R} F \cdot \mathbf{n} d S
$$

where $F(x, y, z)=\langle x, y, z\rangle$
6. Stewart proof

Prove the following identity, assuming that R and ∂R satisfy the conditions of the Divergence Theorem, and that the scalar functions and vector fields are C^{1} :

$$
\iint_{\partial R}(f \nabla g) \cdot \mathbf{n} d S=\iiint_{R}\left(f \nabla^{2} g+\nabla f \cdot \nabla g\right) d V
$$

7. Folland

Prove the following integration by parts formula for triple integrals:

$$
\iiint_{R} f \frac{\partial g}{\partial x} d V=-\iiint_{R} g \frac{\partial f}{\partial x} d V+\iint_{\partial R} f g n_{x} d S
$$

where n_{x} is the x component of the outward unit normal to ∂R. (Similar formulas hold with x replaced by y and z.)

* Assignment Reflections

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?

