Math 222 HW\#1, due Thursday 2/4/21

NAME:

1. Problem 7-1: Jones

Let $x \in \mathbb{R}^{3}$ be thought of as a fixed vector. Then $x \times y$ is a linear function from \mathbb{R}^{3} to \mathbb{R}^{3} and thus can be represented in a unique way as a matrix times the column vector y. Show that in fact

$$
x \times y=\left(\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right) y .
$$

2. Problem 7-2: Jones

Assuming $x \neq 0$ in the preceding problem, find the characteristic polynomial of the 3×3 matrix given there. What are its eigenvalues?
3. §12.4 Stewart

Find the area of the parallelogram with vertices $P(1,0,2), Q(3,3,3), R(7,5,8)$, and $S(5,2,7)$.
4. §12.4 Stewart

Find the volume of the parallelepiped determined by the vectors

$$
\mathbf{a}=\hat{i}+\hat{j}, \quad \mathbf{b}=\hat{j}+\hat{k}, \quad \mathbf{c}=\hat{i}+\hat{j}+\hat{k}
$$

5. §12.4 Stewart
(a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R;
(b) Find the area of the triangle PQR :

$$
P(0,0,-3), \quad Q(4,2,0), \quad R(3,3,1)
$$

6. §12.4 Stewart

If $\mathbf{a} \cdot \mathbf{b}=\sqrt{3}$ and $\mathbf{a} \times \mathbf{b}=\langle 1,2,2\rangle$, find the angle between \mathbf{a} and \mathbf{b}.
7. §12.4 Stewart

Suppose that $\mathbf{a} \neq 0$. Prove or work out a counter example to each of the following:
(a) If $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
(b) If $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
(c) If $\mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot \mathbf{c}$ and $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$, does it follow that $\mathbf{b}=\mathbf{c}$?
8. §12.4 Stewart
(a) Let P be a point not on the line L that passes through the points Q and R in \mathbb{R}^{3}. Show that the distance d from the point P to the line L is

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|},
$$

where $\mathbf{a}=\overrightarrow{Q R}$ and $\mathbf{b}=\overrightarrow{Q P}$.
(b) Use the formula in part (a) to find the distance from the point $P(1,1,1)$ to the line through $Q(0,6,8)$ and $R(-1,4,7)$.

* Assignment Reflections (optional)

How difficult was this assignment? How many hours did you spend on it? Which problems did you find to provide a worthwhile learning experience? Should I be assigning a similar number of problems, fewer problems, or more problems in the future? Is there a good mix of theory and computations?

