Images of Distributions

Jo Nelson

Columbia University

April 4, 2018

Jo Nelson Images of Distributions

2-plane fields

A 2-plane field ξ on M^3 is the kernel of a 1-form α . $\xi = \ker \alpha := \{ v \in T_p M \mid \alpha_p(v) = 0 \}$

It is a smooth choice of an \mathbb{R}^2 subspace in T_pM at each point p. Analogous to defining $S^2 \subset \mathbb{R}^3$ by $f^{-1}(0)$, $f = x^2 + y^2 + z^2 - 1$.

Definition

 ξ is **integrable** if at each point *p* there is a small open chunk of a surface *S* in *M* containing *p* for which $T_p S = \xi_p$.

ker $dz + r^2 d\theta$

Jo Nelson

Images of Distributions

First Contact with Contact Structures

A 2-plane field ξ is a **contact structure** if it is nowhere integrable.

Take a line of planes rotating from $+\infty$ to $-\infty$.

Sweep these lines left-right and up-down.

More Contact Structures

A **contact structure** is a maximally nonintegrable hyperplane field. The kernel of a 1-form α on M^{2n-1} is a contact structure whenever

• $\alpha \wedge (d\alpha)^{n-1}$ is a volume form $\Leftrightarrow d\alpha|_{\xi}$ is nondegenerate.

Above is ker dz - ydx.

Overtwisted

Take cylindrical coordinates (r, θ, z) on \mathbb{R}^3 ; define

 $\alpha_{OT} = \cos r dz + r \sin r d\theta.$

 α_{OT} is smooth since $r^2 d\theta$ and the following function are smooth

$$r \mapsto \begin{cases} rac{\sin r}{r} & ext{ for } r
eq 0, \\ 1 & ext{ for } r = 0, \end{cases}$$

We see that $\alpha_{\mathcal{OT}}$ is a contact form by computing

$$\alpha_{OT} \wedge d\alpha_{OT} = \left(1 + \frac{\sin r}{r} \cos r\right) r dr \wedge d\theta \wedge dz$$

 $\xi_{OT} = \ker \alpha_{OT}$ is called the **overtwisted contact structure** on \mathbb{R}^3 .

Overtwisted versus Tight

 ξ_{std} and ξ_{OT} are horizontal along the z-axis and all rays \perp to the z-axis (with z and θ constant) are tangent to both ξ_{std} and ξ_{OT} .

Both turn \circlearrowleft as one moves outwards from the *z*-axis along any ray. The rotation angle of ξ_{std} approaches (but never reaches) $\pi/2$, but the contact planes of ξ_{OT} make infinitely many complete turns.

Bennequin (82) proved (\mathbb{R}^3, ξ) and (\mathbb{R}^3, ξ_{OT}) are NOT contactomorphic. This result can be regarded as the birth of contact topology!