Images of Distributions

Jo Nelson

Columbia University
April 4, 2018

2-plane fields

A 2-plane field ξ on M^{3} is the kernel of a 1-form α.

$$
\xi=\operatorname{ker} \alpha:=\left\{v \in T_{p} M \mid \alpha_{p}(v)=0\right\}
$$

It is a smooth choice of an \mathbb{R}^{2} subspace in $T_{p} M$ at each point p. Analogous to defining $S^{2} \subset \mathbb{R}^{3}$ by $f^{-1}(0), f=x^{2}+y^{2}+z^{2}-1$.

Definition

ξ is integrable if at each point p there is a small open chunk of a surface S in M containing p for which $T_{p} S=\xi_{p}$.

Nice and integrable

$$
\text { ker } d z+r^{2} d \theta
$$

First Contact with Contact Structures

A 2-plane field ξ is a contact structure if it is nowhere integrable.

Take a line of planes rotating from $+\infty$ to $-\infty$.

Sweep these lines left-right and up-down.

More Contact Structures

A contact structure is a maximally nonintegrable hyperplane field. The kernel of a 1-form α on $M^{2 n-1}$ is a contact structure whenever

- $\alpha \wedge(d \alpha)^{n-1}$ is a volume form $\left.\Leftrightarrow d \alpha\right|_{\xi}$ is nondegenerate.

Above is ker $d z-y d x$.

Take cylindrical coordinates (r, θ, z) on \mathbb{R}^{3}; define

$$
\alpha_{O T}=\cos r d z+r \sin r d \theta .
$$

$\alpha_{O T}$ is smooth since $r^{2} d \theta$ and the following function are smooth

$$
r \mapsto\left\{\begin{array}{cl}
\frac{\sin r}{r} & \text { for } r \neq 0 \\
1 & \text { for } r=0
\end{array}\right.
$$

We see that $\alpha_{O T}$ is a contact form by computing

$$
\alpha_{O T} \wedge d \alpha_{O T}=\left(1+\frac{\sin r}{r} \cos r\right) r d r \wedge d \theta \wedge d z
$$

$\xi_{O T}=\operatorname{ker} \alpha_{O T}$ is called the overtwisted contact structure on \mathbb{R}^{3}.

Overtwisted versus Tight

Overtwisted

Standard
$\xi_{\text {std }}$ and $\xi_{\text {OT }}$ are horizontal along the z-axis and all rays \perp to the z-axis (with z and θ constant) are tangent to both $\xi_{\text {std }}$ and $\xi_{O T}$.

Both turn \circlearrowleft as one moves outwards from the z-axis along any ray. The rotation angle of $\xi_{\text {std }}$ approaches (but never reaches) $\pi / 2$, but the contact planes of $\xi_{O T}$ make infinitely many complete turns.

Bennequin (82) proved (\mathbb{R}^{3}, ξ) and ($\mathbb{R}^{3}, \xi_{\text {OT }}$) are NOT contactomorphic. This result can be regarded as the birth of contact topology!

