Honors Complex Variables- HW 8

Instructor: Nam Q. Le
due November 12, 2012 at 6pm

Problem 1. (a) Find the Laurent series expansion of \(f(z) = \frac{1}{z(1+z^2)} \) in powers of \(z \) that is valid in the following domains

(i) \(0 < |z| < 1 \)
(ii) \(|z| > 1 \).

(b) Find the Laurent series expansion for \(f(z) = \frac{1}{2z^2+3z-2} \) in powers of \(z \) that is valid in an annulus containing \(z = 1 \).

Problem 2. Suppose that \(f \) and \(g \) are entire functions with \(|f(z)| \leq |g(z)| \) for all \(z \in \mathbb{C} \). Prove that \(f(z) = cg(z) \) for some constant \(c \).

Problem 3. (i) Does there exist a function \(f \), analytic on \(\mathbb{C} \setminus \{0\} \), such that \(|f(z)| \geq \frac{1}{\sqrt{|z|}} \) \(\forall \ z \in \mathbb{C} \setminus \{0\} \)?

(ii) Find all functions \(f \), analytic on \(\mathbb{C} \setminus \{0\} \), such that \(|f(z)| \geq \frac{1}{|z|} \) \(\forall \ z \in \mathbb{C} \setminus \{0\} \).

Problem 4. Let \(f \) be a non-constant complex-valued function in the open unit disc \(D = \{ z \in \mathbb{C} : |z| < 1 \} \) such that the functions \(g = f^2 \) and \(h = f^3 \) are both analytic.

(i) Suppose that \(z_0 \in D \) is a zero of both \(g \) and \(h \). Let \(j \) and \(k \) be the multiplicities of \(g \) and \(h \), respectively, at \(z_0 \). Prove that \(j < k \).

(ii) Prove that \(f \) is analytic in \(D \).

Problem 5.(a) Let \(g : [0, 2\pi] \to \mathbb{C} \) be a continuous function. Prove that

\[
\int_0^{2\pi} |g(x)|^2 \, dx \geq \frac{1}{2\pi} \left(\int_0^{2\pi} |g(x)| \, dx \right)^2.
\]

(Hint: Use the inequality \(\int_0^{2\pi} (|g(x)| - c)^2 \, dx \geq 0 \) for suitable real constant \(c \).)

(b) Let \(f \) be an analytic function in \(D(0, R) \setminus \{0\} = \{ z \in \mathbb{C} : 0 < |z| < R \} \). Suppose that for all \(r \in (0, R) \), we have

\[
r^4 \int_0^{2\pi} |f(re^{i\theta})|^2 \, d\theta < 10.
\]

Prove that \(0 \) is either a removable singularity of \(f \) or a pole of \(f \) with order \(n \leq 2 \).