Implicit differentiation

Last time we differentiated the relation defining a circle of radius 5:

\[x^2 + y^2 = 25 \]

We got

\[\frac{d}{dx} (x^2 + y^2) = \frac{d}{dx} (25) \]

\[\frac{d}{dx} x^2 + \frac{d}{dx} y^2 = 0 \]

\[2x + 2y \cdot y' = 0 \]

\[2x \cdot y' = -2y \]

\[y' = -\frac{y}{x} . \]

The point of doing this is: \(\frac{dy}{dx} \) gives the slope of the tangent line to our circle at a point \(x, y \).

So, for example, if \((x, y) = (3, 4)\), we get that at \((3, 4)\),

\[y' \frac{dx}{dy} = -3 \]

\[\frac{dy}{dx} = -\frac{3}{4} . \]

On the graph:

The tangent line at \((3, 4)\) is

\[y - 4 = -\frac{3}{4} (x - 3) \]

\[y = -\frac{3}{4} x + \frac{9}{4} + 4 \]

\[y = -\frac{3}{4} x + \frac{25}{4} . \]

Which looks roughly right.

Note: If \(y \neq 0 \), we can solve for \(y' \) as \(y' = -\frac{y}{x} \). This depends on \(y \), and \(y \) that's okay!
Example Consider \(x^3 + y^3 = 6xy \). This is a curve. It looks like

This graph is the just the set of \((x,y)\) satisfying this equation.

1. Let's find \(y' \). We first differentiate both sides with respect to \(x \). This is the calculus step:

\[
\frac{d}{dx} x^3 + \frac{d}{dx} y^3 = \frac{d}{dx} 6xy
\]

\[
3x^2 + 3y^2 \cdot y' = 6x \cdot y' + \left(\frac{d}{dx} 6x \right) y
\]

\[
3x^2 + 3y^2 \cdot y' = 6xy' + 6y
\]

Now we solve for \(y' \) in terms of the variable \(x \) and \(y \). This is the algebra step:

\[
3x^2 + 3y^2 \cdot y' = 6xy' + 6y
\]

\[
x^2 + y^2 \cdot y' = 2xy' + 2y
\]

\[
y^2 \cdot y' - 2xy' = 2y - x^2
\]

\[
y^2 - 2x)y' = 2y - x^2
\]

\[
y' = \frac{2y - x^2}{y^2 - 2x}
\]

1. Let's find the tangent line to this curve at \((3,3)\).

[Check: Is \((3,3)\) really on this curve? That's the same as asking if \(3^3 + 3^3 = 6 \cdot 3 \cdot 3 \), which is true since both sides equal 54. So yes, \((3,3)\) is on this curve.]

So we just need find \(y' \) when \(x=3 \) and \(y=3 \). But we have our formula \(y' = \frac{2y - x^2}{y^2 - 2x} \) which gives:

\[
y' = \frac{2 \cdot 3 - 3^2}{3^2 - 2 \cdot 3} = \frac{6 - 9}{9 - 6} = \frac{-3}{3} = -1,
\]

at \((x,y)=(3,3)\).

This gives us the slope of our tangent line, and so the equation is
Let's check the graph:

Let's find all points where the tangent line is horizontal. This means $y' = 0$. Let's use both our equations $y' = \frac{2y - x^3}{y^2 - 2x}$ and $x^3 + y^3 = 6xy$. Substituting $y' = 0$ in the first equation gives

$$0 = \frac{2y - x^3}{y^2 - 2x}$$

Multiplying both sides by $y^2 - 2x$ (assuming this is nonzero) gives

$$0 = 2y - x^3$$
$$2y = x^3$$
$$y = \frac{1}{2} x^3.$$

Now that we have y by itself, we can substitute this into $x^3 + y^3 = 6xy$:

$$x^3 + \left(\frac{1}{2} x^3\right)^3 = 6x \left(\frac{1}{2} x^3\right)$$
$$x^3 + \frac{1}{8} x^6 = 3x^3$$
$$\frac{1}{8} x^6 = 2x^3$$
$$x^6 = 16x^3$$

If $x \neq 0$, then divide by x^3:

$$x^3 = 16$$
$$x = (16)^{1/3}$$
$$= (2^4)^{1/3}$$
$$= 2^{4/3}.$$
So we've solved for k, now we can solve for y using $y = \frac{1}{2}x^2$:

$$y = \frac{1}{2} \left(2^{4/3}\right)^2$$

$$= \frac{1}{2} \cdot 2^{8/3}$$

$$= \frac{1}{2} \cdot 2^{5/3}$$

So the tangent line should be horizontal at $(k,y) = \left(2^{4/3}, 2^{5/3}\right) \approx (2.52, 3.17)$

What if $k=0$? Then using $y = \frac{1}{2}x^2$ again, we get $y = \frac{1}{2} \cdot 0^2 = 0$. So we would need to check if $(0,0)$ has horizontal tangent line. There's a problem there though, namely that the graph intersects itself in a horizontal and vertical direction. It's like there are two tangents at $(0,0)$. What's going on here? Well, remember when we cancelled $y^2 - 2x$ in the equation $y' = 0 = \frac{2y - k^2}{y^2 - 2x}$? At $(0,0)$, $y^2 - 2x = 0^2 - 2 \cdot 0 = 0$, so we couldn't cancel. In fact, the numerator is $2y - k^2 = 0$, so we get a zero-over-zero situation which tells us y' is undefined at $(0,0)$ according to our expression. So we just ignore $(0,0)$ here.

Example Find y'' if $x^4 + y^4 = 16$.

Solution Differentiate both sides (calculus step).

$$4x^3 + 4y^3 \cdot y' = 0$$

Then the algebra step gives

$$4x^3 + 4y^3 \cdot y' = 0$$

$$x^3 + y^3 \cdot y' = 0$$

$$y^3 \cdot y' = -x^3$$

$$y' = -\frac{x^3}{y^3}$$
Now differentiate again using the quotient rule. Remember to always use the chain rule on y.

\[
y'' = \frac{d}{dx} \left(\frac{x^3}{y^3} \right)
\]

\[
y'' = \frac{y^3(-3x^2) - (-x^3)(3y^2y')} {y^6}
\]

\[
y'' = \frac{-3x^2y^3 + 3x^3y^2y'} {y^6}
\]

This depends on y', but we already know that $y' = \frac{-x^3}{y^3}$, so

\[
y'' = \frac{-3x^2y^3 + 3x^3y^2 \left(\frac{-x^3}{y^3} \right)} {y^6}
\]

\[
y'' = \frac{-3x^2y^3 - \frac{3x^6} {y}} {y^6}
\]

\[
y'' = \frac{-3x^2y^4 - 3x^6} {y^7}
\]

\[
y'' = \frac{-3x^2 (y^4 + x^4)} {y^7}
\]

Now use $x^4 + y^4 = 16$:

\[
y'' = \frac{-3x^2 (16)} {y^7}
\]

\[
y'' = -48 \frac{x^2} {y^7}
\]

Inverse trig functions:

We can use implicit differentiation to find derivatives of functions like $\sin^{-1}(x)$. Set

\[
y = \sin^{-1}(x)
\]

Which means $\sin(y) = x$ and $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. Then we implicitly differentiate:

\[
\frac{d}{dx} \sin y = \frac{d}{dx} x
\]

\[
\cos y \cdot y' = 1
\]
Since \(-\frac{\pi}{2} \leq \gamma \leq \frac{\pi}{2}\), \(\cos \gamma \geq 0\), with \(\cos \gamma\) being zero only at the endpoints \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\). So
\[
\cos \gamma = \sqrt{1 - \sin^2 \gamma}
\]
But \(\sin \gamma = x\), so this is
\[
= \sqrt{1 - (\sin \gamma)^2} = \sqrt{1 - x^2}
\]
Therefore
\[
\cos \gamma \cdot y' = 1
\]
gives
\[
\sqrt{1 - x^2} \cdot y' = 1.
\]
The domain of \(\sin^{-1}(x)\) is \([-1, 1]\). At the endpoints, \(y = \sin^{-1}(-1) = -\frac{\pi}{2}\), and \(y = \sin^{-1}(1) = \frac{\pi}{2}\), and in either case, \(\cos(y) = \cos(\frac{\pi}{2})\) or \(\cos(\frac{\pi}{2}) = 0\). Therefore we should have \(\sqrt{1 - x^2} = 0\) at \(x = \pm 1\), and indeed this is the case. So we ignore the endpoints. So if \(x\) is in the open interval \((-1, 1)\), then \(\sqrt{1 - x^2} \cdot y' = 1\) gives
\[
y' = \frac{1}{\sqrt{1 - x^2}}
\]
because \(\sqrt{1 - x^2} > 0\) on \((-1, 1)\). Therefore
\[
\frac{d}{dx} \sin^{-1}(x) = \frac{1}{\sqrt{1 - x^2}}.
\]
Another example The range of \(\tan^{-1}(x)\) is \((-\frac{\pi}{2}, \frac{\pi}{2})\). So \(y = \tan^{-1} x\) means
\[
\tan y = x\quad \text{and} \quad -\frac{\pi}{2} < y < \frac{\pi}{2}.
\]
Therefore
\[
\frac{d}{dx} \tan y = \frac{d}{dx} x
\]
\[
\sec^2 y \cdot y' = 1
\]
\[
y' = \frac{1}{\sec^2 y}
\]
\[
y' = \frac{1}{1 + \tan^2 y} \quad \text{(because } \sec^2 y = 1 + \tan^2 y)\]
\[
y' = \frac{1}{1 + x^2}
\]
And so \(\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}\). (Turns out, since \(1 + x^2 > 0\), we didn't need to care about \(\frac{\pi}{2} < y < \frac{\pi}{2}\).)
Again, minus signs go with the "cotfunctions", like in the case of derivatives of usual trig functions.