1. December 3, 2013

Lemma 1. Let A be a real symmetric $n \times n$ matrix, then the roots of its characteristic polynomial $\det(\lambda I - A)$ are all real.

Proof. We consider A as a hermitian linear transformation from \mathbb{C}^n to \mathbb{C}^n with respect to the standard hermitian product on \mathbb{C}^n. A root of $\det(\lambda I - A)$ corresponds to an eigenvalue λ_1. Pick an eigenvector $x \neq 0$ belonging to λ_1 and $Ax = \lambda_1 x$. However, we know that any eigenvalue of a hermitian linear transformation must be real (use $\langle Ax, x \rangle = \langle x, Ax \rangle$).

\[\square \]

Theorem 1. Let W be an n-dimensional real vector space, $\langle \langle \cdot, \cdot \rangle \rangle$ be a real inner product, and $L : W \to W$ be a symmetric linear transformation, i.e. $\langle \langle Lx, y \rangle \rangle = \langle \langle x, Ly \rangle \rangle$. Then L has an orthonormal basis of eigenvectors.

Proof. We prove the statement by induction on n. $n = 1$ case can be easily verified. Let’s assume the theorem is true for $n - 1$. We take an orthonormal basis $[e_1, \cdots, e_n]$ for W and write $Le_i = \sum_{j=1}^{n} a_{ij}e_j$. Since L is symmetric, we have $a_{ji} = a_{ij}$ or $A = [a_{ij}]$ is a symmetric matrix. From the lemma, any root of the characteristic polynomial of A is real. Take λ_1 to be a root, then $A - \lambda_1 I$ is singular. Therefore, the linear transformation $L - \lambda_1 I$ is singular, and there exists a $u_1 \in W$ such that $Lu_1 = \lambda_1 u_1$. Now we look at the orthogonal complement S of u_1 in W with respect to $\langle \langle \cdot, \cdot \rangle \rangle$. It can be shown that, as in the proof of the spectral theorem, L maps S into itself. We can then apply the induction hypothesis to S which is an $n - 1$ dimensional space.

\[\square \]

We discuss the real version of the spectral theorem in the following.

Definition 1. Let V be a finite dimensional complex vector space with hermitian product $\langle \cdot, \cdot \rangle$ and $[e_1, \cdots, e_n]$ be an orthonormal basis for V.

\[\text{Date: December 5, 2013.} \]
A vector \(v \) is said to be “real” (with respect to \([e_1, \cdots, e_n]\)) if it is a linear combination of \(e_1, \cdots, e_n \) with real coefficients.

Note that each vector \(v \) in \(V \) can be uniquely written as \(v = \Re v + \sqrt{-1} \Im v \) where both \(\Re v \) and \(\Im v \) are real.

Theorem 2. Let \(V \) be a finite dimensional complex vector space with hermitian product \(\langle \cdot, \cdot \rangle \) and \([e_1, \cdots, e_n]\) be an orthonormal basis for \(V \). Let \(T : V \to V \) be a hermitian linear transformation such that \(T(e_i) \) is real for each \(i = 1, \cdots, n \). Then there exists a real orthonormal basis of eigenvectors \(u_i \) of \(T \), i.e. \(\langle u_i, u_j \rangle = \delta_{ij} \) and \(Tu_i = \lambda_i u_i \), \(i = 1, \cdots, n \).

Of course, all \(\lambda_i \)'s are real because \(T \) is hermitian. This is a special case of the spectral theorem: when \(T \) is “real” in the above sense, all the eigenvectors can be chosen to be “real”.

Proof. Consider the set \(W \) of all real vectors in \(V \). \(W \) is a real vector space and \([e_1, \cdots, e_n]\) is a basis. \(\langle \cdot, \cdot \rangle \) also defines a real inner product \(\langle \cdot, \cdot \rangle \) on \(W \) (check that it satisfies all axioms). The restriction \(L = T|_W \) of \(T \) to \(W \) is a real linear transformation from \(W \) to \(W \) since each \(T(e_i) \) is real. That \(T \) is hermitian implies \(L \) is symmetric with respect to \(\langle \cdot, \cdot \rangle \) or \(Lx, y \rangle = \langle x, Ly \rangle \). This now follows from the previous theorem. \(\square \)

2. DECEMBER 5, 2013

We shall prove one more diagonalization theorem. Recall a linear transformation \(T : V \to V \) for a finite dimensional complex vector space \(V \) with hermitian product \(\langle \cdot, \cdot \rangle \) is unitary if \(\langle Tx, Ty \rangle = \langle x, y \rangle \).

Theorem 3. Any unitary linear transformation is diagonalizable over an orthonormal basis.

Proof. Suppose \(T \) is a unitary linear transformation.

Step 1. Any eigenvalue \(\lambda \) of \(T \) satisfies \(|\lambda| = 1 \). Suppose \(Tx = \lambda x \), then \(\langle x, x \rangle = \langle Tx, Tx \rangle = |\lambda|^2 \langle x, x \rangle \).

Step 2. Eigenvectors belonging to distinct eigenvalues of \(T \) are orthogonal. Suppose \(Tx = \lambda x, Ty = \mu y, \langle x, y \rangle = \langle Tx, Ty \rangle = \lambda \mu \langle x, y \rangle \). Suppose \(\langle x, y \rangle \neq 0 \), we have \(1 = \lambda \mu \) but \(1 = \lambda \lambda \) and thus \(\mu = \lambda \), a contradiction.

Step 3. Induction on the dimension of \(V \). \(n = 1 \) easily verified. Suppose the theorem is true for \(n - 1 \). Take an eigenvalue \(\lambda_1 \) and an eigenvector \(u_1 \) such that \(Tu_1 = \lambda_1 u_1 \). Again, we look at the orthogonal complement \(S \) of \(u_1 \) and we claim \(T(S) \subset S \) or \(T \) restricts to a linear transformation on \(S \). Suppose \(x \in S \), suffices to prove \(\langle Tx, u_1 \rangle = 0 \) Write \(\langle Tx, u_1 \rangle = \langle Tx, T(u_1/\lambda_1) \rangle = \langle x, u_1/\lambda_1 \rangle = 0 \). \(\square \)
To summarize, the following linear transformations are diagonalizable:

1) Hermitian, skew hermitian, or unitary linear transformation on a finite-dimensional complex linear space with hermitian product. Diagonalizable over orthonormal basis.

2) Symmetric linear transformation on a finite-dimensional real linear space with real inner product. Diagonalizable over orthonormal basis.

3) Linear transformation with distinct eigenvalues.

2.1. Cayley-Hamilton Theorem. Q: Given an $n \times n$ matrix A, can we find a polynomial f such that $f(A) = O$, the zero matrix?

Example 1. $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $A^2 = O$. We can take the polynomial to be λ^2.

$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then $(B - I)^2 = O$. We can take the polynomial to be $\lambda^2 - 2\lambda + 1$.

Consider $A \in \mathcal{M}_{n \times n}$. Since $dim(\mathcal{M}_{n \times n}) = n^2$ and $I, A, A^2, \cdots A^n$ are $n^2 + 1$ vectors in $\mathcal{M}_{n \times n}$, they must be linearly dependent and there exist $c_0, \cdots c_{n^2}$ such that

$$c_0 I + c_1 A + \cdots c_{n^2} A^n = O.$$

In section 7.1 Cayley-Hamilton theorem says that we can do better than this. In fact, we can find a polynomial of degree n that works and it is exactly the characteristic polynomial of A.

Theorem 4. Let A be an $n \times n$ matrix and $f(\lambda) = \det(\lambda I - A) = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_0$ be its characteristic polynomial. Then $f(A) = O$ in the sense that $A^n + c_{n-1}A^{n-1} + \cdots + c_0 I = O$.

Example 2. $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. $\det(\lambda I - A) = \lambda^2 - 5\lambda - 2$. By the theorem $A^2 - 5A - 2I = O$. This is very useful in calculating higher power of A, for example $A^3 = 5A^2 + 2A = 5(5A + 2I) + 2A = 27A + 10I$.

See Apostol 7.11 for the proof of Cayley-Hamilton. Here is a heuristic proof. First, suppose A is diagonalizable, $A = SAS^{-1}$ for a diagonal matrix Λ with diagonal entries $\lambda_1, \cdots \lambda_n$. We compute $A - \lambda_i I = S(\Lambda - \lambda_i I)S^{-1}$ and $(A - \lambda_1 I) \cdots (A - \lambda_n I) = S(\Lambda - \lambda_1 I) \cdots (\Lambda - \lambda_n I)S^{-1}$. It is now easy to check that $(\Lambda - \lambda_1 I) \cdots (\Lambda - \lambda_n I) = O$.

We now turn to the general case. Recall that if A has distinct eigenvalues, then A is diagonalizable. We claim that a generic $n \times n$ matrix has distinct eigenvalues.
Consider the case $n = 3$. In the space of eigenvalues, $\lambda_1 = \lambda_2$, $\lambda_1 = \lambda_3$, and $\lambda_2 = \lambda_3$ represent planes. As long as the eigenvalues of A avoid those planes, A is diagonalizable. Even if A has multiple eigenvalues, say $\lambda_1 = \lambda_2$. We say find a sequence of $n \times n$ matrices A_i, away from those planes, such that $A_i \to A$ as $i \to \infty$. Let f_i be the characteristic polynomial of A_i and f be the characteristic polynomial of A, we have $f_i(A_i) = 0$. We claim that $f_i \to f$ as $i \to \infty$ as well and $f(A) = \lim_{i \to \infty} f_i(A_i) = O$.

To make this argument rigorous, we need to study the notions of limit, continuity, etc in the space $\mathcal{M}_{n \times n}$, which is isomorphic to \mathbb{R}^{n^2}. These are topics of multivariable calculus which will be covered next semester.