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Quasilocal mass from a mathematical perspective

Mu-Tao Wang

Abstract. Quasilocal mass in general relativity is a notion defined for a
closed spacelike 2-surface in spacetime. In this note, we explain the definition
in [23] and [24] from a mathematical viewpoint, emphasizing the connection
to differential geometry and nonlinear partial differential equations. We also
discuss a minimax interpretation of the definition and compare with other

notions of quasilocal mass.

1. Surface Hamiltonian

Our subject of study is a two-dimensional closed embedded spacelike surface
Σ in spacetime N , and thus the induced metric is Riemannian. We also assume Σ
bounds a spacelike region Ω in spacetime. These are surfaces on which the notion
of quasilocal energy/mass is defined in relativity. 1

We denote the Lorentz metric on N by 〈·, ·〉N and the connection by ∇N . Let
e4 be the future unit timelike normal vector field of Ω and P (·, ·) be the second
fundamental form of Ω with respect to e4. Let e3 denote the outward unit spacelike
normal of Σ with respect to Ω. We also choose orthonormal frames {e1, e2} tangent
to Σ. The mean curvature vector H is the unique normal vector field that is the
normal part of

∑2
a=1 ∇N

eaea. Denote by k =
∑2

a=1〈∇N
eae3, ea〉 the mean curvature

of Σ with respect e3 and, p = trΣP =
∑2

a=1〈∇N
eae4, ea〉, then

H = −ke3 + p e4.

We can reflect H along the light cone of the normal bundle to get

J = ke4 − p e3.

H and J are well-defined independent of the choice of frames. For a standard
round 2-sphere in the Minkowski space R

3,1 bounding a standard 3-ball, the mean
curvature vector H is inward pointing (k > 0) and J is future pointing.

Let T be a future timelike unit vector field which generates a unit timelike
translation in spacetime, the surface Hamiltonian derived by Brown and York [2, 3]
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(see also [8]) is given by

(1.1)
1

8π

∫
Σ

〈J, T⊥〉N + 〈∇N
e3e4, T

�〉N

where T� is the tangential part of T (shift vector) and T⊥ is the normal part of T
along Σ. The last term 〈∇N

e3e4, T
�〉N can be expressed by the second fundamental

form as P (e3, T
�). This expression apparently depends on the vector field T and

the normal gauge {e3, e4} along Σ.
When the spacetime is the Minkowski space R

3,1, we can take T0 to be a
constant future timelike unit vector. Let L be the orthogonal complement to T0 in
R

3,1 which is isometric to R
3. It is not hard to see that the projection of Σ onto L is

an embedded closed surface Σ̂ with a well-defined mean curvature Ĥ with respect
to the outward normal of Σ̂. T0 picks up a distinguished normal gauge {ĕ3, ĕ4} along
Σ.

Proposition 1.1. For a closed spacelike 2-surface Σ in the Minkowski space
which bounds a spacelike hypersurface, there exists a unique orthogonal normal
gauge {ĕ3, ĕ4} along Σ such that ĕ3 is a outward spacelike unit normal and ĕ4 is a
future timelike unit normal and they satisfy

(1.2)
1

8π

∫
Σ

〈J, T⊥
0 〉R3,1 + 〈∇R

3,1

ĕ3 ĕ4, T
�
0 〉R3,1 = − 1

8π

∫
Σ̂

Ĥ.

In fact, denote by τ the restriction of time function defined by T0 to Σ and
by ∇τ the gradient vector field of τ on Σ (with respect to the induced metric), we
have

T0 =
√
1 + |∇τ |2ĕ4 −∇τ.

The lapse and shift are given by
√
1 + |∇τ |2 and T�

0 = −∇τ , respectively.

Proof. Proposition 3.1 of [24] (see also [7]). �
Obviously, no such relation as (1.2) holds when the ambient space is a general

spacetime.
For a closed embedded 2-surface Σ in a general spacetime, to define the

quasilocal energy by the Hamilton-Jocobi method, one needs to find a reference
embedding of Σ in a reference spacetime. The quasilocal energy is obtained by
subtracting the reference surface Hamiltonian from the physical one.

The idea in [23, 24] is to use an isometric embedding of the surface into R
3,1

as a reference and emigrate a constant future timelike vector T0 in R
3,1 back to the

physical spacetime N . When the mean curvature vector H of Σ in N is spacelike,
T0 picks up a “canonical gauge” {ē3, ē4} in the physical spacetime, and determines
a future timelike unit vector field T along Σ in N with the same lapse and shift as
T0. Isometric embedding anchors the intrinsic geometry, and allows one to compare
the difference of the extrinsic geometry caused by the spacetime curvature.

2. Isometric embedding into the Minkowski space R
3,1

The well-known Weyl’s embedding problem is about isometric embeddings into
R

3 in which one asks for an embedding X̂ : S2 → R
3 whose induced metric is a

given Riemannian metric σ on S2. The equation can be written compactly as

〈dX̂, dX̂〉R3 = σ.
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In terms of local coordinates u, v on S2, there are three equations corresponding
to three components E,F, and G in σ = Edu2 + 2Fdudv + Gdv2 and three
unknown functions X̂ = (X̂1, X̂2, X̂3). The problem has a very satisfactory answer
by Nirenberg [16] and Pogorelov [17] when the Gauss curvature of σ is positive:

Theorem 2.1. If the Gauss curvature of σ is positive, there exists a unique
isometric embedding X̂ of σ up to rigid motion of R3.

Here we are interested in isometric embeddings into R
3,1. In this case, there are

four unknowns functions X = (X0, X1, X2, X3) and one more equation is needed
to give a well-determined system. As X0 plays the role of the time function and
can be distinguished from other coordinate functions, it is natural to prescribe the
time function. Before we state the solution, here are two observations:

1. Suppose Σ is a spacelike 2-surface in R
3,1 which bounds a spacelike hy-

persurface. Consider the projection from R
3,1 to R

3 given by (X0, X1, X2, X3) to

(X1, X2, X3). The image of the projection of Σ is a well-defined embedded surface Σ̂

in R
3. In fact, if the induced metric on Σ is σ, the induced metric on Σ̂ is σ+(dX0)

2.
As opposed to a projection in Euclidean space which is a contraction, a projection
in the Minkowski space is an expansion.

2. Take any function τ on (S2, σ), then σ̂ = σ + (dτ )2 is another Riemannian

metric, the Gauss curvature K̂ of σ̂ is related to the Gauss curvature K of σ by

(2.1) K̂ = (1 + |∇τ |2)−1[K + (1 + |∇τ |2)−1 det(∇2τ )],

where ∇ is the gradient operator and ∇2 is the Hessian operator, with respect to σ.
With these two observations, the following proposition can be proved easily

(see[24]):

Proposition 2.2. Suppose τ is a function on (S2, σ) with K̂ > 0, then there
exists a unique isometric embedding X into R

3,1 of σ such that the time function
X0 = τ .

Proof. We first isometrically embed σ̂ into R
3 to get a closed convex surface

Σ̂, and then take the graph of τ over Σ̂ in R
3,1. �

We say such an isometric embedding has convex shadow as Σ̂ is a convex surface
in R

3.

3. Minimax definition of quasilocal mass

Let Σ a closed embedded spacelike 2-surface which bounds a spacelike region
in spacetime N . Let X be an isometric embedding of the induced metric on Σ
into R

3,1, and T0 be a constant future timelike unit vector in R
3,1. We used the

normal gauge {ĕ3, ĕ4} from Proposition 1.1 for (X,T0) to compute the reference
surface Hamiltonian. The question now is how to choose T, e3, e4 along the surface
in physical spacetime for the physical surface Hamiltonian(1.1).

We require that T and T0 should have the same lapse and shift, and thus

(3.1) T⊥ =
√
1 + |∇τ |2e4 and T� = −∇τ

for an orthogonal normal gauge {e3, e4} along Σ to be determined. Suppose we fix
a spacelike domain Ω bounded by Σ. Let eΩ4 be the future timelike unit normal
of Ω and eΩ3 be the outward spacelike normal of Σ with respect to Ω. All other
orthogonal normal gauges {e3, e4} (with e3 outward spacelike unit and e4 future
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timelike unit) can be written in terms of {eΩ3 , eΩ4 } by e4 = coshφ eΩ4 − sinhφ eΩ3
and e3 = coshφ eΩ3 − sinhφ eΩ4 for a function φ. With J = k eΩ4 − p eΩ3 , the physical
surface Hamiltonian is computed as
(3.2)

H(T, e3, e4) = − 1

8π

∫
Σ

√
1 + |∇τ |2(k coshφ− p sinhφ) + (Δτ )φ+ 〈∇N

eΩ3
eΩ4 ,∇τ 〉N

where Δ is the Laplace operator on Σ. It is not hard to check that when k2 > p2

(i.e. the mean curvature vector H is spacelike), the minimum of (3.2) as a function
of φ is achieved when φ = φ̄ satisfies√

1 + |∇τ |2(k sinh φ̄− p cosh φ̄) + Δτ = 0.

The corresponding ē3, ē4, and T̄ are

ē4 = cosh φ̄ eΩ4 − sinh φ̄ eΩ3 ,

ē3 = cosh φ̄ eΩ3 − sinh φ̄ eΩ4
and

T̄ =
√
1 + |∇τ |2ē4 −∇τ.

Since H = −k eΩ3 + p eΩ4 , we have

〈H, ē4〉N = k sinh φ̄− p cosh φ̄ =
−Δτ√
1 + |∇τ |2

and

(3.3) 〈H, T̄ 〉N = −Δτ.

{ē3, ē4} is the canonical gauge referred in [23]. On the reference side, the time
function τ can be expressed in terms of the embedding X and T0 with τ = −〈X,T0〉.
The mean curvature vector H0 of a surface in Minkowski space is H0 = ΔX,
therefore the condition of canonical gauge in fact means

(3.4) 〈H0, T0〉R3,1 = 〈H, T̄ 〉N ,

i.e. the area change when the surface moves in R
3,1 along the direction of T0 is the

same as the area change when the surface moves in spacetime N along the direction
of T̄ . Or, in physical terms, the “expansions” with respect to observers T0 and T̄0

are the same.

Definition 3.1. Let Σ a closed embedded spacelike 2-surface which bounds a
spacelike region in spacetime N . Let X be an isometric embedding of the induced
metric on Σ into R

3,1, and T0 be a constant future timelike unit vector in R
3,1.

The quasilocal energy E(Σ, X, T0) of Σ with respect to (X,T0) is defined to be the
supremum of

1

8π

∫
Σ̂

Ĥ − H(T, e3, e4)

among all T satisfying (3.1) and all orthogonal normal gauges {e3, e4} so that e3 is
an outward pointing unit spacelike normal and e4 is a future pointing unit timelike
normal.

We summarize in the following proposition proved in [24]:

Proposition 3.2. When the mean curvature vector of Σ in N is spacelike.
The quasilocal energy is achieved at the (unique) canonical gauge.
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The pair (X,T0) should be considered as a quasilocal observer. In general
relativity, the rest mass can be recovered by minimizing energy seen by various
observers. Thus we defined the quasilocal mass by minimization.

Definition 3.3. Same notation as in Definition 3.1, the quasilocal mass of Σ
is defined to be the infimum of E(Σ, X, T0) among all (X,T0).

Strictly speaking, we should restrict (X,T0) to those admissible pairs in [23,
24]. We specialize to the case when mean curvature vector is spacelike and thus
the canonical gauge is uniquely defined in [23, 24]. Note the minimax definition
for quasilocal mass works even if the mean curvature vector is not spacelike and it
picks up the right expression at a marginally trapped surface on which the mean
curvature vector is null.

In the case when the mean curvature vector is spacelike and inward pointing,
we can use {− H

|H| ,
J
|H|} as a reference normal gauge. This is the case for a small

sphere near a point or a large sphere near asymptotically flat infinity. Denote the
connection one-form αH on Σ by

αH(Y ) = 〈∇N
Y

J

|H| ,
H

|H| 〉N

for any tangent vector field Y .
The quasilocal energy of Σ with respect to (X,T0) can be expressed as:

E(Σ, X, T0) =
1

8π

∫
Σ̂

Ĥ − 1

8π

∫
Σ

|H|
√

1 + |∇τ |2 cosh θ + (Δτ ) θ − αH(∇τ ),

where sinh θ = −Δτ

|H|
√

1+|∇τ |2
.

This is zero if Σ is in the Minkowski space and. We proved in [24] :

Theorem 3.4. E(Σ, X, T0) ≥ 0 if Σ bounds a regular spacelike region in a
spacetime which satisfies the dominant energy condition and (X,T0) is an admissible
pair in the sense of [23, 24].

4. Searching for optimal isometric embedding

We can describe the evaluation of quasilocal mass as a variational problem
for an optimal isometric embedding into R

3,1. Given an spacelike 2-surface Σ in a
general spacetime, we assume the mean curvature vector is spacelike and inward
pointing. Therefore the induced metric, the Lorentz norm of the mean curvature
vector, and the connection one form (σ, |H|, αH) are given and intrinsically defined
on the surface Σ. The question can be formulated as given a Riemannian metric, a
positive function, and a one-form, is there a surface in R

3,1 that best matches these
data?

We can view the quasilocal energy as a functional on the space of isometric
embeddings of σ into R3,1 and study the minimization problem. To be more specific,
we consider an admissible pair (X,T0) in which X is an isometric embedding of σ
into R

3,1 and T0 is a future timelike unit vector. We ask that X has spacelike mean
curvature vector and has convex shadow Σ̂ in the direction of T0.
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Given (σ, |H|, αH), the Euler Lagrange equation for quasilocal energy
E(Σ, X, T0) at (X,T0) with τ = −〈X,T0〉R3,1 is
(4.1)

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = 0

where sinh θ = −Δτ

|H|
√

1+|∇τ |2
, σ̂ is the induced metric on Σ̂, and ĥab is the second

fundamental form of Σ̂.
Coupling with the isometric embedding equation 〈dX, dX〉R3,1 = σ or 〈dX̂,

dX̂〉R3 = σ + (dτ )2, they form what we called the optimal isometric embedding
system. There are exactly four unknown functions (coordinates) and four equations.

The equation should be read in the following way. First take a function τ on Σ,

consider σ̂ = σ + (dτ )2 on Σ. Isometrically embed σ̂ into R
3 and pick up ĥab and

Ĥ from this isometric embedding. We look for τ that satisfies (4.1), a fourth-order
elliptic equation.

5. Solving the equation for isolated systems

In general relativity, an isolated system is an asymptotically flat spacetime on
which gravitation is weak near infinity. There are two notions of asymptotic flatness
which correspond to null infinity and spatial infinity. In both cases, the infinity is
foliated by a one-parameter family of spacelike 2-surface Σr, r ∈ [r0,∞) such that

σ = r2σ̃ +O(r),

|H| = 2

r
+O(r−2),

divσαH = O(r−3),

(5.1)

where σ̃ is the standard round metric on a unit 2-sphere. When r is large enough,
Σr has positive Gauss curvature, and there exists a unique isometric embedding
Xr : Σr → R

3 ⊂ R
3,1. Xr solves the optimal embedding equation up to the top

order and this is enough to evaluate the limit of the quasilocal energy. Our analysis
of limit of quasilocal mass at infinity only relies on the existence of a family of
2-surfaces with such data, and thus we may as well take this as a definition of
asymptotically flat spacetime which is coordinate independent.

In [25], we show the limit of E(Σr, X̂r, T0) is the same as the limit of

(5.2)
√
1 + |a|2 1

8π

∫
Σr

(H0 − |H|) +
3∑

i=1

ai
1

8π

∫
Σr

(X̂idivσαH),

where (X̂1, X̂2, X̂3) are the components of the isometric embedding X̂r, H0 is the

mean curvature of the image of X̂r in R
3, and T0 = (

√
1 + |a|2, a1, a2, a3). It is not

hard to see that X̂r approaches a round sphere as r → ∞ and thus X̂i = rX̃i+O(1)

for i = 1, 2, 3 where X̃1, X̃2, X̃3 are the three standard first eigenfunctions on the
unit 2-sphere S2. In particular, this is a coordinate independent expression that
recovers the ADM and Bondi-Sachs energy-momentum at spatial and null infinity,
respectively [25, 5].

Remarkably, expression (5.2) is a linear in T0. Thus the quasilocal en-

ergy E(Σr, X̂r, T0), a priori nonlinear in T0, gets linearized at infinity, acquires
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Lorentzian symmetry, and defines an energy-momentum 4-vector. Expand

divσαH =
v

r3
+O(r−4)

for a function v on S2, the components of the momentum vector are given by

(5.3)
1

8π

∫
S2

X̃iv = Pi, i = 1, 2, 3.

The calculation of quasilocal energy, which only picks up the top order term, is
stable with respect to variation of the reference isometric embedding. We will take
an O(1) perturbation of the isometric embedding X̂r into R

3 in the time direction
and solve the next order of the optimal isometric embedding equation within this
family. Thus

X0 = τ = τ (1) +O(r−1)

for a function τ (1) on S2. The O(r−3) term of the optimal embedding equation is

1

2
ΔS2(ΔS2 + 2)τ (1) = v.

The equation is solvable as long as v is perpendicular to the kernel of ΔS2+2, or
the linear space spanned by X̃1, X̃2 and X̃3. In view of (5.3), nonzero “momentum”
vector is the obstruction to solvability.

Recall that (Xr, T0) plays the role of an observer. In classical relativity, energy
is relative and mass is absolute. Given a system with energy-momentum 4-vector
(E,P1, P2, P3), energy depends on the observer and mass m =

√
E2 −

∑
i P

2
i . If

the observer is at rest with the system, m = E and the momentum is eliminated.
We observe that in our case the observer T0 needs to be aligned with the energy-
momentum vector in order to solve the optimal embedding equation. This can be
achieved by boosting the reference embedding X̂r. The discussion covers the spatial
infinity case discussed in [25] as well. We boost Xr in R

3,1 by a family of elements
of SO(3, 1) so the images are close to a totally geodesic slice that is orthogonal to
the total energy-momentum (E,P1, P2, P3).

The second variation of the quasilocal energy at each order is given by∫
S2

(ΔS2δτ +
1

2
ΔS2ΔS2δτ )δτ,

where δτ is the variation of τ .
Since the operator ΔS2 + 1

2ΔS2ΔS2 is positive, this shows the solution we
obtained is locally energy-minimizing. It turns out the Euler-Lagrange equation
can be solved term-by-term (assuming analyticity in r) and all terms are locally
energy-minimizing.

Theorem 5.1. [5] The optimal isometric embedding problem for any isolated
system can be solved, and the solution is a local minimizer (assuming analyticity
in r).

6. Relations with other masses

In this section, we compare the Brown-York mass and the Liu-Yau mass with
the new quasilocal mass, and discuss their relations.

One of the most promising approaches to the definition of quasilocal mass
had been the one proposed by Brown-York [2, 3] in which the definition was
motivated by using the Hamiltonian formulation of general relativity (see also
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Hawking-Horowitz [8]). The Brown-York mass depends on a spacelike hypersurface
Ω bounded by Σ and is defined to be

1

8π
(

∫
Σ

H0 −
∫
Σ

HΩ)

where HΩ is the mean curvature of Σ with respect to Ω, and H0 is the mean
curvature of an isometric embedding of Σ into R

3. Under the assumptions that
HΩ > 0, Σ has positive Gauss curvature K > 0, and Ω has non-negative scalar
curvature, Shi and Tam [21] prove the Brown-York mass is non-negative. The
Brown-York mass appears to be most useful in the time-symmetric case, i.e. when
the second fundamental form of Ω in N vanishes.

Motivated by geometric consideration in [27], Liu and Yau [11] (see also Ki-
jowski [9], Booth-Mann[1], and Epp [6]) introduce a mass that is gauge indepen-
dent. The Liu-Yau mass is

1

8π
(

∫
Σ

H0 −
∫
Σ

|H|)

where H0 is the same as the one in the definition of the Brown-York mass, and H
is the mean curvature vector of Σ in spacetime. The positivity is proved under the
assumptions that H is spacelike, K > 0, and the spacetime satisfies the dominant
energy condition. However, it was pointed out by ÓMurchadha et al. [14] that the
Liu-Yau mass, as well as the Brown-York mass, can be strictly positive for a surface
in the Minkowski space. In contrast, the new quasilocal mass is zero for surfaces in
the Minkowski space. In addition,

1) In the definitions of the Brown-York or the Liu-Yau mass, the lapse-

shift is chosen to be (1, 0). Our lapse-shift (
√
1 + |∇τ |2,−∇τ ) comes from the

reference isometric embedding, and the surface Hamiltonian corresponds to unit
time translation in T . The future timelike unit vector field T should be interpreted
as a fleet of observers which need not be orthogonal to the surface Σ.

2) The canonical gauge which corresponds to the natural condition that the
expansions of the surface in the reference and physical spacetime are the same is
adopted in our definition. This gauge arises naturally from the minimax definition
of quasilocal mass.

3) We obtain an optimal isometric embedding of Σ in R
3,1 through the data

(σ, |H|, αH). The optimal isometric embedding thus provides a diffeomorphism from
Σ onto a closed spacelike 2-surface in the Minkowski space. On the asymptotically
flat region (in the sense that there exists a family of 2-surfaces that satisfies (5.1)),
the optimal isometric embedding gives a diffeomorphism from the region onto a
spacelike hypersurface in the Minskowki space. In particular, the total energy-
momentum expression we have is independent of the coordinate system at infinity.

This is equivalent to saying that our approach takes an asymptotically flat
hypersurface in the Minkowski space as a reference, while in the usual formulation
of ADM mass in terms of asymptotically flat coordinates takes the totally geodesic
R

3 in the Minkowski space as a reference.
Suppose we look the hypersurface in R

3,1 defined by t = f(r) with f(r) =
rk + o(rk). When k ≥ 1

2 , the ADM mass and the limit of the Brown-York mass
both diverge. The new quasilocal mass is the same as the Liu-Yau mass and both are
equal to zero. In fact, the reference isometric embedding recovers the hypersurface
itself.
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A natural question is whether the new quasilocal mass is the same as the
Brown-York mass in the time symmetric case. Since αH = 0 for as a surface Σ in
a time-symmetric spacelike region Ω, τ = 0 satisfies (4.1) and thus the isometric

embedding X̂ into R3 with T0 = (1, 0, 0, 0) is a critical point of the quasilocal energy.

Suppose HΩ > 0, the second variation of quasilocal energy at (X̂, (1, 0, 0, 0)) (with
τ = 0) was computed in [13]:

(6.1)

∫
Σ

(Δη)2

HΩ
+ (H0 −HΩ)|∇η|2 − II0(∇η,∇η)

for any function η = δτ on Σ. Here II0 is the second fundamental form of the image
surface of X̂ in R

3.
Miao-Tam-Nie [13] proved that (6.1) is non-negative assuming the pointwise

inequality H0 ≥ HΩ holds. This shows that the Brown-York mass is a local
minimum of our quasilocal energy in this case. In fact, it is not hard to see that
the argument applies to the case when divσαH = 0, and thus the Liu-Yau mass is a
local minimum of our quasilocal energy under the pointwise assumption H0 ≥ |H|.

The author would like to thank PoNing Chen and Shing-Tung Yau for helpful
discussions.
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