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Abstract
There have been many attempts to define quasilocal energy/mass for a spacelike
2-surface in a spacetime by the Hamilton–Jacobi method. The main difficulty
in this approach is the subtle choice of the background configuration to be
subtracted from the physical Hamiltonian. Quasilocal mass should be positive
for general surfaces, but on the other hand should be zero for surfaces in
the flat spacetime. In this paper, we survey the work in a series of papers
[6, 25–27] in which a new notion of quasilocal mass/energy–momentum is
proposed and investigated. In particular, the notion of energy observed by a
‘quasilocal observer’ will be discussed.

PACS number: 04.20.Cv

(Some figures in this article are in color only in the electronic version)

1. Introduction

One of the greatest accomplishments of the theory of general relativity in the past
century is the proof of the positive mass/energy theorem for asymptotically flat spacetime
[22, 28]. This provides the theoretical foundation for stability of an isolated gravitating system.
However, the concept of mass/energy remains a challenging problem because of the lack of a
quasilocal description. Most observable physical models are finitely extended spatial regions
and measurement of mass/energy on such a region is essential in many fundamental issues. In
fact, among Penrose’s list [19] of major unsolved problems in classical general relativity, the
first one is ‘Find a suitable quasilocal definition of energy–momentum in general relativity’.

In special relativity, quasilocal mass/energy is a well-defined notion. For a continuous
matter distribution, the energy–momentum density is given by a symmetric (0, 2) tensor Tμν

which satisfies conservation law T μ
ν,μ = 0. Suppose tμ is the 4-velocity of an observer, which

is a unit future timelike translating killing vector field in the Minkowski space R
3,1. Let � be

a bounded spacelike region, then the energy seen by the observer tμ and intercepted by � is∫
�

Tμνt
μuν, (1.1)

where uν is the future timelike unit normal of �.
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By conservation law, Tμνt
μ is divergence free, and the dual 3-form is closed. A closed

3-form on R
3,1 is exact, and thus there exists a 2-form ω such that (1.1) is expressed as

∫
�

dω.
By Stoke’s theorem, this is equal to∫

∂�

ω = E(∂�, tμ), (1.2)

an integral over the boundary 2-surface ∂� which depends linearly on the observer tμ. In
relativity, energy depends on an observer and the rest mass can be obtained by minimizing
among all energy seen by observers. Thus, minimizing E(∂�, tμ) among tμ gives the
quasilocal mass M of ∂�. The quasilocal energy–momentum is then M · t̄μ if the minimum
energy is seen by the observer t̄μ. This is the prototype of quasilocal mass and energy–
momentum.

Can mass/energy be defined quasilocally when gravity is coupled? A general spacetime
(N, g) is a four-dimensional manifold with the gravitation field represented by a Lorentzian
metric g. Let T denote the energy–momentum tensor of matter density; Einstein’s field
equation then reads

Ric − 1
2Rg = 8πT .

Several difficulties arise when we consider the previous formulation on a general spacetime
N. First of all, a generic spacetime lacks the symmetry or Killing vector field to define conserved
quantities. Even in the presence of a Killing field, the same integral (1.1) will only account
for energy contribution from matter fields. As is well known, there are vacuum solutions (i.e.
T = 0) for Einstein’s field equation such as Schwarzchild’s solutions, and there is nontrivial
energy contribution from gravitation.

We nevertheless can pose the same question: suppose � is a bounded spacelike region in
N, what is the quasilocal mass/energy of �, counting all contributions from matter fields and
gravitation field? As no density exists for the gravitational field, mass/energy of the integral
form (1.1) over � should not be expected. Instead, by energy conservation, we expect to read
off the information from the boundary 2-surface ∂�. For a fleet of observers along ∂�, we
may ask the quasilocal energy seen by such observers in the form of (1.2).

Measuring gravitation energy in general relativity turns out to be a very subtle problem.
Gravitation has no density by Einstein’s equivalence principle. On the other hand, spacetime
curvature distorts the underlying geometry and makes energy evaluation a nonlinear problem.
Gravity is different from all other field theories in that it lacks a background configuration;
there is no canonical identification between a curved spacetime and a flat one. An identification
is only possible at the infinity of an asymptotically flat spacetime, and even in this case, there
is ambiguity up to a choice of coordinate system.

In this paper, we survey the work in a series of papers [6, 25–27] in which a new notion
of quasilocal mass/energy–momentum is proposed and investigated. In particular, the notion
of energy E(∂�, tμ) observed by a ‘quasilocal observer’ tμ along ∂� will be discussed.

2. Surface Hamiltonian of Brown–York

A promising approach to quasilocal mass is Brown–York’s [1, 2] Hamilton–Jacobi analysis of
the gravitational action. The analysis, when applied to the time history of a bounded spatial
region, produces a surface Hamiltonian which we review in the following. Let � be a closed
embedded spacelike 2-surface which bounds a spacelike region � in a spacetime N. Let uμ

denote the future timelike unit normal to � and vμ denote the outward spacelike unit normal
of � such that uμvμ = 0. Denote by k the trace of the two-dimensional extrinsic curvature of
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� in � in the direction of vμ. Denote the Riemannian metric, the extrinsic curvature, and the
trace of the extrinsic curvature on � by gμν , Kμν = ∇μuν , and K = gμνKμν , respectively.
Let tμ be a timelike vector field satisfying tμ∇μt = 1. tμ can be decomposed into the lapse
function and shift vector tν = Nuν + Nν along �. The calculation by Brown–York (see also
Hawking–Horowitz [11]) leads to the surface Hamiltonian

H = − 1

8π

∫
�

[Nk − Nμvν(Kμν − Kgμν)] (2.1)

on a solution M of the Einstein equation. We note that the Hamiltonian (2.1) is an integral on
� that depends on the choices of a future timelike unit normal uμ and a timelike vector field
tμ along �.

To define quasilocal energy, one needs to find a reference action that corresponds to fixing
the metric on the timelike boundary, and compute the corresponding reference Hamiltonian
H0. The energy is then E = H − H0.

Several ambiguities need to be anchored to make this well defined.

(1) What is the reference configuration? This should at least correspond to an isometric
embedding of � into a flat spacetime.

(2) How do we choose uν , the timelike unit normal of �? Indeed, only a timelike unit normal
along � is needed.

(3) How do we choose lapse N and shift Nν in order to determine tμ?

Brown and York proposed a prescription in [1, 2]:

(1) The reference is taken to be an isometric embedding of � into R
3, considered as a flat

three-dimensional slice with Kμν = 0 in a flat spacetime. References such as surfaces in
the light cones [3, 14] have also been considered.

(2) The Brown–York energy seems to depend on an arbitrary choice of � and thus uμ. In
fact, different choices of uμ were adopted in the calculation of large and small sphere
limits [3, 4] in order to obtain the desired results.

(3) Brown–York chose N = 1 and Nμ = 0, and the quasilocal energy is thus 1
8π

∫
�
(k0 − k)

where k0 is the mean curvature of an isometric embedding of � into R
3. When the

intrinsic curvature is positive, this embedding is essentially unique.

For other earlier attempts for quasilocal mass along the Hamilton–Jacobi analysis
approach, we refer to [24, 25]. Among these proposals, the Brown–York mass and the
Liu-Yau mass [13, 15] posses the important positivity property [15, 23]. However there exist
surfaces in the Minkowski space with strictly positive Brown–York and Liu-Yau mass [17].

3. Surface Hamiltonian for spacelike 2-surfaces in the Minkowski space

Suppose � is a closed oriented spacelike 2-surface in R
3,1. Given any constant timelike unit

vector tν , we decompose it into the normal part and tangent part along �. Thus,

tν = Nuμ + Nμ (3.1)

where uν is a future timelike unit normal vector field along � and Nμ is a tangent vector field
along �. We note that uμ is a normal vector field along � that is uniquely determined by this
decomposition, which is independent of any spatial region � bounds.

Now suppose � bounds are spacelike hypersurface � in the Minkowski space. We assume
� is connected. These are surfaces on which the quasilocal energy or mass is well-defined in
special relativity. Let R

3 be the totally geodesic spacelike 3-subspace of R
3,1 that is orthogonal

to tμ. Let π : R
3,1 → R

3 be the projection and consider the restriction of π to � and �,
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which are maps of full rank. Since any spacelike hypersurface is achronal, the restriction of π

to � is bijective and thus a diffeomorphism. In general, the image of � under the projection is
a one-sided surface �̂ in R

3 and a continuous outward unit normal vector field is well defined.
It turns out that the surface Hamiltonian on � can be expressed in terms of the geometry of
�̂. Let � be a closed oriented spacelike 2-surface � in the Minkowski space which bounds
a spacelike region �. Let tμ be a unit future timelike translating Killing field in R

3,1, uμ

be the unit future timelike normal defined by tμ = Nuμ + Nμ along �, and vμ be the unit
spacelike normal that is orthogonal to uμ and outward pointing with respect to �. The surface
Hamiltonian density on � with respect to tμ and uμ is given by

Nk − Nμvν(Kμν − Kgμν) = Nk̂,

where k̂ is the mean curvature of the projection of � onto the spacelike 3-subspace that is
orthogonal to tμ.

This formula was derived in [26] and a related one first appeared in [10]. In fact, suppose τ

is the restriction of the time function (with respect to tμ) to �, then the shift vector Nμ is −∇τ ,
the gradient of τ with respect to the induced metric on �, and the lapse is N =

√
1 + |∇τ |2.

We thus have ∫
�

[Nk − Nμvν(Kμν − Kgμν)] =
∫

�̂

k̂.

That tμ is Killing implies

∇μtν + ∇ν tμ = 0. (3.2)

Let 	μν be the induced metric on �. Tracing the equation on � yields

	μν(∇μtν) = 0. (3.3)

With the decomposition tμ = Nuμ + Nμ, (3.3) implies

−N	μν(∇νuμ) = 	μν(∇νNμ). (3.4)

On the left-hand side, the term 	μν(∇νuμ) is the expansion in the direction of uμ, while the
right-hand side is a divergence expression that is equal to 
τ where 
 is the Laplace operator
with respect to the induced metric on �.

4. New quasilocal energy

Now we review the definition of quasilocal energy in [25]. Suppose � is a spacelike 2-surface
which bounds a spacelike hypersurface � in a spacetime M. The mean curvature vector field
hν is the unique normal vector field along � that is characterized by ‘the expansion 	μ

ν ∇μuν

along any normal vector field uν is −hνu
ν’.

Consider a reference isometric embedding i : � ↪→ R
3,1 of the induced metric on �.

Suppose i(�) bounds a spacelike hypersurface �0 in R
3,1. Let tν0 be a unit future timelike

translating Killing field in R
3,1. Choose (u0

ν, v0
ν) as in the previous section, i.e. uν

0 is the unit
future timelike normal defined by tν0 = Nu

μ

0 +Nν along �, and vν
0 is the unit spacelike normal

that is orthogonal to uν
0 and outward pointing with respect to �0. (u0

ν, v0
ν) along i(�) in R

3,1

is the reference normal gauge we shall fix, and it depends on the choice of the pair
(
i, tν0

)
.

When the mean curvature vector hν of � in M is spacelike,
(
i, t

μ

0

)
determine a canonical

future timelike normal vector field ūν in M along �. Indeed, there is a unique ūν that satisfies

hνū
ν = (h0)νu0

ν (4.1)

where hν
0 is the mean curvature vector of i(�) in R

3,1. Physically, (4.1) means the expansions
of � ⊂ M and i(�) ⊂ R

3,1 along the respective directions ūν and u0
ν are the same.
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Figure 1. Canonical gauge.

Take v̄ν to be the spacelike normal vector that is orthogonal to ūν and outward pointing
with respect to the spacelike hypersurface �. (ūν, v̄ν) is called the canonical gauge (figure 1)
with respect to the pair

(
i, tν0

)
.

4-vectors in R
3,1 and M, along i(�) and �, respectively, can be identified through

u0
ν → ūν, v0

ν → v̄ν, (4.2)

and the identification of tangent vectors on i(�) and �. Therefore, we obtain a quasilocal
observer t̄μ = Nūμ + Nμ along � with the same lapse and shift as t

μ

0 = Nu
μ

0 + Nμ along
i(�).

The quasilocal energy E
(
i, t

μ

0

)
of � in the canonical gauge with respect to

(
i, tν0

)
is then

the difference of the two surface Hamiltonian H(t̄μ, ūμ) − (
t
μ

0 , u
μ

0

)
.

In comparison to Brown–York’s definition, we have the following.

(1) The image of the reference isometric embedding is in R
3,1 and it may not be contained in

any totally geodesic R
3.

(2) The timelike normal vector field ūμ is fixed by the canonical gauge condition (4.1).
(3) The shift vector Nμ = −∇τ is the gradient vector of a function defined on � and

N = √
1 + NμNμ. This follows by comparing (4.1) with (3.4).

The canonical gauge is characterized by the property that it gives the maximal energy
among all possible gauges (see Proposition 2.1. in [26]). When the mean curvature vector hν

is spacelike, this maximum is achieved at the unique (ūμ, v̄μ). In general, we can still define
the quasilocal energy E

(
i, t

μ

0

)
to be the maximal value.

5. 2-surface geometry and mean curvature vector

It turns out, the physical data that is needed to determine the quasilocal mass is best represented
by intrinsic tensors on the surface instead of spacetime coordinates. This is especially useful
when the mean curvature vector is spacelike. The spacetime metric g induces a Riemannian
metric σ on �. We shall denote the mean curvature vector by H without any indication of
spacetime coordinates. The mean curvature vector, as a section of the normal bundle of �, also
defines a connection one-form αH of the normal bundle which we describe in the following.

5
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Take a tetrad frame (e1, e2, l, n) where e1 and e2 form an orthonormal basis of the tangent
space of �, and l and n are future null normal vector fields normalized so that g(l, n) = −1.
Consider the following Newman–Penrose coefficients:

ρ = −1

2

2∑
a=1

g(∇ea
l, ea) and μ = 1

2

2∑
a=1

g(∇ea
n, ea).

In terms of these, the mean curvature vector is H = −2ρn + 2μl. Note that the definition
of ρ and μ depends on the choice of l and n, but the definition of H does not. Suppose H is
spacelike and thus ρ < 0 and μ < 0, we denote

|H | =
√

8ρμ. (5.1)

In this case, the mean curvature vector determines the following orthonormal basis in the
normal bundle:

e3 = − H

|H | = 1√
2

(√
ρ

μ
n −

√
μ

ρ
l

)

and

e4 = 1√
2

(√
ρ

μ
n +

√
μ

ρ
l

)
.

This is chosen so that on the standard configuration of a round sphere in the Minkowski space,
e3, is the outward spacelike normal and e4 is the future timelike normal. As in [26], we
consider the connection one-form on � defined by

αH (V ) = g(∇V e3, e4),

for any tangent vector V of �. In terms of ρ and μ,

αH (V ) = 1

2
V

(
log

μ

ρ

)
− 1

2
g(∇V l, n).

Again this is an expression that is independent of the choice of l and n.
Another expression αH (V ) = g

(∇V
J

|H | ,
H
|H |

)
is used in [26], in which J = 2ρn + 2μl is

the future timelike normal J that is dual to the mean curvature vector along the light cone in
the normal bundle.

6. Properties of quasilocal mass

Let � be a spacelike 2-surface which bounds a spacelike region in a spacetime. We describe
properties of quasilocal energy E

(
i, tν0

)
with respect to a quasilocal observer

(
i, tν0

)
. Rigidity—

if � is a spacelike 2-surface which bounds a spacelike region in R
3,1, then there exists a

quasilocal observer
(
i, t

μ

0

)
such that the quasilocal energy E

(
i, tν0

) = 0.
In fact, there exists an isometric embedding i : � → R

3,1 such that E
(
i, t ′0

ν
) = 0 for any

constant future timelike unit vector t ′0
ν in R

3,1. The latter property can be interpreted as the
vanishing of quasilocal energy–momentum.

Positivity result holds if the quasilocal observer satisfies the admissible pair condition
defined in [25] (definition 2).

Positivity—suppose the spacetime satisfies the dominant energy condition and � is a
spacelike 2-surface which bounds a spacelike region. We also assume that � has spacelike
mean curvature and

(
i, tν0

)
satisfies the admissible pair condition, then E

(
i, tν0

)
� 0.

We can define the quasilocal mass M to be the minimum of E
(
i, tν0

)
among all admissible

pairs and the quasilocal energy–momentum to be M · t̄ ν0 if the minimum is achieved at t̄ ν0 .
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A challenging problem is to characterize those surfaces in the rigidity case. Namely,
when the quasilocal energy–momentum is 0, the surface should be sitting in the Minkowski
space. This is a stronger assumption than the vanishing of quasilocal mass. Those surfaces
with zero quasilocal mass but nonzero quasilocal energy–momentum should correspond to
purely radiative configurations.

In [6, 27], we prove the quasilocal mass approaches the ADM mass and the Bondi mass at
spatial and null infinity, respectively. In the spatial infinity case, we take �r to be coordinate
spheres with respect to an asymptotically flat coordinates on an end. In the null infinity case,
we take �r to be the r-slice at a fixed retarded time w = c with respect to a Bondi coordinate
at null infinity. In either case, the 2-surface �r has a positive Gauss curvature when r is large
enough and can take the isometric embedding ir to be the unique one into R

3 ⊂ R
3,1 by the

Weyl embedding theorem (Nirenberg [18] and Pogorelov [20]).
Asymptotic behavior—for a fixed tν0 ∈ R

3,1, in either the spatial infinity or null infinity
case, the limit of quasilocal energy E(�r, ir , t

ν
0 ) is a linear expression in t

μ

0 and defines
an energy–momentum 4-vector which coincides with the ADM energy–momentum and the
Bondi–Sachs energy–momentum [5, 21], respectively.

It is not hard to see from the expression of E
(
i, t

μ

0

)
that E is rather nonlinear in t

μ

0 ; it
nevertheless gets linearized and acquires the Lorentzian symmetry at infinity.

We write a general future timelike unit vector t ν0 in R
3,1 in the form (

√
1 + |a|2, a1, a2, a3)

for a1, a2, a3 ∈ R. It is shown that

lim
r→∞ E(�r,Xr, t0) =

√
1 + |a|2E + akPk

where (E, P1, P2, P3) is equal to the ADM energy–momentum 4-vector in the spatial infinity
case and the Bondi–Sachs energy–momentum 4-vector in the null infinity case, respectively.

In terms of the data on �r , we have

E = lim
r→∞

1

8π

∫
�r

(|H0| − |H |),

and

Pk = lim
r→∞

1

8π

∫
�r

αH (∇xk) = − lim
r→∞

1

8π

∫
�r

(div�r
αH )xk (6.1)

where Xr = (x1, x2, x3) : �r → R
3 is the isometric embedding into R

3 and H0 is the mean
curvature of the image of Xr. We consider each xk as a function on �r and ∇xk is the gradient
of xk with respect to the induced metric on �r as a tangent vector field. This gives a uniform
expression for the ADM and Bondi–Sachs energy–momentum 4-vectors that is independent
of the asymptotically flat coordinates at infinity.

7. Spherically symmetric case and monotonicity property

Among earlier proposals for quasilocal mass, the Hawking mass and the Bartnik mass enjoy
a nice monotonicity property in the outward spatial direction. This is consistent with other
matter field theory, as the mass is represented as the integral of the density function which
is pointwise positive. In particular, the monotonicity of Hawking mass along the inverse
mean curvature flow is critical in Huisken–Ilmanen’s [12] proof of the Riemannian Penrose
inequality. On the other hand, it is well known that the energy method is the most power tool in
studying the hyperbolic equation. Energy estimates will be extremely useful in controlling the
dynamics of Einstein’s equation in spacetime evolution. In fact, in the proof of stability of the
Minkowski space [9] and black hole formation theorem [8], the integral of the Bel-Robinson
tensor, as an approximation of the gravitational energy, is essential in deriving curvature

7
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estimates. In this section, we test the proposed quasilocal mass in a spherically symmetric
spacetime and its monotonicity, and speculate on the general case. In a spherically symmetric
spacetime, the metric is of the form:

gab dxa dxb + r2σ̃

where σ̃ is the standard metric on the unit 2-sphere S2. The areal radius r of an SO(3) orbit,
is a function on the quotient manifold Q with Lorentz metric gab dxa dxb of signature (1, 1).
Each point p ∈ Q represents a round 2-sphere �(p) with radius r(p). The energy–momentum
tensor is also spherically symmetric and is thus of the form

Tab dxa dxb + r2Sσ̃

for a function S on Q. The mean curvature vector of a sphere �(p) is computed

H(p) = −2

r
∂ar

∂

∂xa
.

Suppose the mean curvature vector of �(p) is spacelike, or equivalently ∂ar ∂
∂xa is

spacelike. Our mass, which coincides with the Liu-Yau mass, is computed as

M(p) = r(1 −
√

∂ar∂ar),

while the Misner–Sharpe mass [16] is

m(p) = r

2
(1 − ∂ar∂ar).

It is understood that if the mean curvature vector is non-spacelike,
√

∂ar∂ar is replaced by
−√−∂ar∂ar . The relationship between M and m is given exactly as

m = M − M2

2r
. (7.1)

In particular, as long as M is bounded, M and m approach to the same limit as r goes to
infinity. On the other hand, at horizon where ∇r = 0, we have M(r0) = r0 and m(r0) = r0

2 .
Thus, the two notions of quasilocal mass are equivalent in the sense that M

2 � m � M . On a
Schwarzchild’s solution, M is monotone decreasing along ∂

∂r
and M(∞) = 1

2M(r0), while m
is a constant in r with m(∞) = m(r0). It was shown in [7] (p 362, (3.18)) that m, as a function
on the quotient manifold Q, satisfies

∂am = 4πr2(Tab − gabtrT )∂br,

where trT = gabTab. Thus, m is monotone non-decreasing along ∂
∂r

(assuming spacelike) in
a spherically symmetric spacetime that satisfies the dominant energy condition, in particular,
by (7.1), we have

d

dr

(
M − M2

2r

)
� 0. (7.2)

Contrary to some expectation for the monotonicity of quasilocal mass, we believe that a
straightforward monotonicity may not hold true in a general spacelike slice for the following
reasons: the gravitational energy has no density and the gravitation binding energy may be
negative. However, an inequality such as (7.2) may still hold for our quasilocal mass. This
will be discussed in a forthcoming work.
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[9] Christodoulou D and Klainerman S 1993 Princeton Mathematical Series vol 41 (Princeton, NJ: Princeton

University Press)
[10] Gibbons G W 1997 Class. Quantum Grav. 14 2905–15
[11] Hawking S W and Horowitz G T 1996 Class. Quantum Grav. 13 1487–98
[12] Huisken G and Ilmanen T 2001 J. Differ. Geom. 59 353437
[13] Kijowski J 1997 Gen. Relativ. Gravit. 29 307–43
[14] Lau S R 1999 Phys. Rev. D 60 104034
[15] Liu C-C M and Yau S-T 2003 Phys. Rev. Lett. 90 231102
[16] Misner C W and Sharp D H 1964 Phys. Rev. 136 B571–6
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