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Abstract
This note discusses the recent work of Huang-Schoen-Wang [13] on specifying total
conserved quantities of a vacuum initial data set.

1 Conserved quantities in special relativity

Conserved quantities in special relativity are associated with symmetry in the Minkowski space R3,1.
The isometry group of R3,1 consists of spacetime translations and Lorentz rotations. An infinitesimal
isometry corresponds to a Killing vector field of R3,1. In term of standard coordinates t, x1, x2, x3 on
R3,1, they are:

• Constant vector fields.

• Boost vector fields: t ∂
∂xi + xi ∂

∂t , i = 1, 2, 3.

• Rotation vector fields: Yi = ∂
∂xi × ~x, i = 1, 2, 3.

For example, Y(3) = x1 ∂
∂x2 − x2 ∂

∂x1 corresponds to rotation about the x3 axis.
A Killing vector field K satisfies the Killing equation

Ka;b + Kb;a = 0. (1.1)

Given a timelike geodesic γ with 4-velocity V (thus V bV a
;b = 0) and energy-momentum 4-vector p = mV .

By the geodesic equation and the Killing equation (1.1) , we have 〈p, K〉 = paKa is a constant along γ
and thus conserved. In case when K is a future timelike unit constant vector field as the 4-velocity of an
observer, E = −〈p,K〉 is interpreted as the energy seen by the corresponding observer.

Each continuous distribution of matter field is attached with an energy-momentum stress tensor of
matter density Tab. For example, for electromagnetic field,

Tab =
1
4π

(FacFbdg
cd − 1

4
gabFcdFefgcegdf ).

T satisfies the conservation equation as a result of coordinate invariance of the associated Lagrangian:

T a
b;a = 0.

For any spacelike hypersurface Ω in R3,1 which represents a time slice, the energy seen by an observer
K and intercepted by Ω is the integral

∫

Ω

T (K,u) =
∫

Ω

TabK
aub (1.2)

where ub is the future unit timelike normal of Ω. This is a conserved quantity by the Killing field equation
for K, the conservation equation for T , and Stoke’s theorem, i.e.

∫

Ω1

T (K,u1) =
∫

Ω2

T (K, u2)

if ∂Ω1 = ∂Ω2.
Therefore, this expression depends only on the boundary 2-surface Σ = ∂Ω and is the quasi-local

energy of Σ seen by the observer K if K is a future timelike Killing field.
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2 Energy in general relativity

In general relativity, spacetime is a 4-dimensional manifold with a Lorentz metric g, the gravitational
field. Thus local causal structure is the same, and each tangent space is isometric to the Minkowski
space. Gravitational force is represented by the spacetime curvature of g. Einstein’s field equation
relates gravitation field and matter fields by

Ric− 1
2
Rg = 8πT (2.1)

where Ric is the Ricci curvature, and R is the scalar curvature of g, respectively. T represents the energy-
momentum stress tensor of all matter fields. This is the Euler-Lagrange equation of the Hilbert-Einstein
action.

It turns out first derivatives of g are all coordinate dependent, and thus there is no density for
gravitational energy. This is manifestly Einstein’s equivalence principle. If we try to form the same energy
expression (1.2) by integrating T over a spacelike hypersurface as in special relativity, we encounter two
difficulties:

Firstly, a generic spacetime does not have any Killing field and the expression is not conserved. Though
T in (2.1) still satisfies the conservation equation T a

b;a = 0. Secondly, the expression would give only the
energy contribution from matters. There exists vacuum spacetime, i.e. T = 0, with nonzero energy such
as the Kerr solution. There is gravitational energy by the sheer presence of spacetime curvature.

We recall the Kerr metric in Boyer-Lindquist coordinates is of the form:

ds2 = −∆
U

(
dt− a sin2 θ dφ

)2
+ U

(
dr2

∆
+ dθ2

)

+
sin2 θ

U

(
a dt− (r2 + a2) dφ2

)2

U = r2 + a2 cos2 θ

∆ = r2 − 2 m r + a2

This is a stationary vacuum solution which is axially symmetric solution and ∂
∂φ is the corresponding

ration Killing field. The total mass is m and the total angular momentum with respect to ∂
∂φ is a. When

a = 0, this reduces to the Schwarzschild solution which is a static vacuum solution that is also spherically
symmetric.

Einstein’s field equation is derived from variation of the Einstein-Hilbert action on a spacetime domain
M :

1
16π

∫

M

R +
1
8π

∫

∂M

K +
∫

M

L(g, Φ)

where K is the trace of the second fundamental form of ∂M and Φ represents all the matter fields. The
variation of the last term with respect to g gives T . The second term is indeed a divergence term

∫
M

∂aIa,
where Ia consists of first derivatives of g. Formally applying Hamilton-Jacobi analysis to this action, one
obtains T ∗ab, the so called Einstein pseudo tensor, which is expressed in terms of first derivatives of g
and satisfies the conservation equation T ∗a

;ba = 0.
Here is Weyl’s [17] comment on T ∗ab (see chapter 3 of [6] for the English translation quoted here)
Nevertheless it seems to be physically meaningless to introduce the T ∗ab as energy components of

the gravitational field; for, these quantities are neither a tensor nor are they symmetric. In fact by
choosing an appropriate coordinate system all the T ∗ab can be made to vanish at any given point; for this
purpose one only needs to choose a geodesic (normal) coordinate system. And on the other hand one
gets T ∗ab 6= 0 in a ’Euclidean’ completely gravitationless world when using a curved coordinate system,
but where no gravitational energy exists. Although the differential relations (∇aT ∗ab = 0) are without a
physical meaning, nevertheless by integrating them over an isolated system one gets invariant conserved
quantities.
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3 Isolated systems and total conserved quantities

An isolated system is modeled on an asymptotically flat spacetime where gravitation is weak at spatial
infinity. Arnowitt-Deser-Misner [1] applied Hamilton-Jacobi analysis of the Einstein-Hilbert action to
such a system, and obtained total conserved quantities. It turns out the application of Noether’s theorem
to general relativity requires a reference system which is taken to be R3,1. These include the total energy
and linear momentum, as well as the angular momentum and center of mass which altogether correspond
to the 10-dimensional Killing vector fields of the Minkowski space.

Let (M, g, p) be an unbounded spacelike hypersurface in spacetime , where g is the induced Riemannian
metric and p is the second fundamental form, we usually use the canonical momentum π = p − (trgp)g
instead of p. (M, g, π) is called an initial data set as it represents a Cauchy data for the Einstein equation
as a hyperbolic PDE system. We say (M, g, π) is asymptotically flat if outside a compact set there exists
an asymptotically flat coordinate system {xi}i=1,2,3 so that gij − δij = O(|x|−1) and πij = O(|x|−2) and
derivatives of gij and pij satisfy appropriate decay conditions.

Let (M, g, π) be an asymptotically flat initial data set. Let E,C,P,J denote the energy, center of
mass, linear momentum, and angular momentum of (g, π). They are defined as limits of flux integrals
over coordinate spheres Sρ of radius ρ with respect to the asymptotic flat coordinate system.

E =
1

16π
lim

ρ→∞

∫

Sρ

∑

i,j

(gij,i − gii,j)νj

Pi =
1
8π

lim
ρ→∞

∫

Sρ

∑

j

πijν
j

Ji =
1

8πE
lim

ρ→∞

∫

Sρ

∑

j,k

πjkY j
(i)ν

k

Ck =
1

16πE
lim

ρ→∞

∫

Sρ


xk

∑

i,j

(gij,i − gii,j)νj −
∑

i

(gikνi − giiν
k)




Here νi is the outward unit normal of Sρ and Y(i), i = 1, 2, 3 is the rotation Killing field with respect
to the xi axis.

It turns out the well-definedness of Ji and Ck rely on extra assumptions at spatial infinity. We impose
the Regge–Teitelboim [14] condition that

gij(x)− gij(−x) = O(|x|−2) and πij(x) + πij(−x) = O(|x|−3)

and similar parity conditions on ∂gij and ∂πij . These quantities are conserved under the evolution of
Einstein’s equation of a maximal slice with appropriate assumptions on the decay rate of (g, π), see
chapter 3 of Christodoulou [6]. There are other different conditions (see for example, Ashtekar-Hansen
[2]) to ensure the finiteness of angular momentum and center of mass. An important property of the
Regge-Teitelboim condition is, by a theorem of Corvino-Schoen [10], that initial data sets satisfying this
condition are dense, and thus a generic initial data set can be approximated by these sets.

(M, g, π) as a hypersurface in spacetime satisfies the constraint equation

1
2
(R(g) +

1
2
(Trgπ)2 − |π|2) = µ, and divg(π) = J (3.1)

where µ, J are from the energy-momentum stress tensor of matter fields which is assumed to satisfy the
dominant energy condition µ ≥ |J|. We shall assume both µ and J vanish and thus (M, g, π) is a vacuum
initial data set.

Question: Given a vacuum initial data set which is asymptotically flat, is there any constraint on the
conserved quantities E,C,P,J?

Schoen-Yau’s positive mass theorem [15, 16] [3] imposes the most important constraint on these
quantities, namely that the energy-momentum vector is a future timelike vector. In particular, this says
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that the magnitude of the linear momentum vector is bounded above by the energy:

E ≥ |P|
and thus the total mass m =

√
E2 − |P|2 is always non-negative.

For the Kerr solutions which describe rotating stationary axially symmetric vacuum black holes, we
have the mass-angular momentum inequality

m ≥ |J|.
It has been shown by Dain [11, 12] and Chruściel et al.[7, 8] that such an inequality is also satisfied

by general axially symmetric black hole solutions of the Einstein equations (see also work of Zhang [18]).

4 Specifying total conserved quantities

In [13], we show that the mass-angular inequality does not hold true in general.

Theorem There are no constraints on the angular momentum and center of mass in terms of the energy-
momentum vector for general vacuum solutions of the Einstein equations.

In fact, given any 10 real numbers E,C,P,J with E ≥ |P|, we can construct a vacuum initial data
set that has them as conserved quantities.

An effective procedure was given for adding a specified amount of angular momentum to a solution of
the vacuum Einstein equations, producing a new solution with specified angular momentum but with only
slightly perturbed energy-momentum vector. A similar result was obtained for the center of mass. Then,
by considering a family of initial data set near the given one, and by doing the construction continuously
and a degree argument, we obtain a perturbation with arbitrarily specified angular momentum and center
of mass, while leaving the energy-momentum vector unchanged.

From a technical point of view the reason it is possible to make these constructions is that the angular
momentum and center of mass are determined by terms in the expansion of the solution which are of
lower order than those which determine the energy and linear momentum.

The idea then is to make perturbations near infinity which affect only the lower order terms in the
expansion. We do this by explicitly constructing linear perturbations supported in a shell near infinity
which impose the required change in angular momentum (or center of mass), and then by finding a solution
of the vacuum constraint equations which is sufficiently close to the perturbed system so that the change
in angular momentum (or center of mass) persists. This is an application of the Corvino-Schoen [9, 10]
gluing construction of initial data set.

The added term in the perturbation vanishes in the axially symmetric case, and we cannot increase
the angular momentum while keeping the axially symmetric condition. Thus the result is consistent with
the mass-angular momentum inequality of Dain and Chruściel et al.
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