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GENERALIZED LAGRANGIAN MEAN CURVATURE
FLOWS: THE COTANGENT BUNDLE CASE

KNUT SMOCZYK*, MAO-PEI TSUI**, AND MU-TAO WANG***

ABSTRACT. In [SW2], we defined a generalized mean curvature
vector field on any almost Lagrangian submanifold with respect
to a torsion connection on an almost Kéhler manifold. The short
time existence of the corresponding parabolic flow was established.
In addition, it was shown that the flow preserves the Lagrangian
condition as long as the connection satisfies an Einstein condition.
In this article, we show that the canonical connection on the cotan-
gent bundle of any Riemannian manifold is an Einstein connection
(in fact, Ricci flat). The generalized mean curvature vector on any
Lagrangian submanifold is related to the Lagrangian angle defined
by the phase of a parallel (n,0) form, just like the Calabi-Yau
case. We also show that the corresponding Lagrangian mean cur-
vature flow in cotangent bundles preserves the exactness and the
zero Maslov class conditions. At the end, we prove a long time
existence and convergence result to demonstrate the stability of
the zero section of the cotangent bundle of spheres.

1. INTRODUCTION

An almost Kéhler manifold (N,w, J) is a symplectic manifold (NN, w)
with an almost complex structure J such that ¢ = (-,-) = w(-, J")
becomes a Riemannian metric. Any symplectic manifold admits an
almost Kéahler structure. In particular, on the cotangent bundle N :=
T*% of a Riemannian manifold (X,0), there is a canonical almost
Kahler structure with respect to the base metric . The associated
metric g on N (see Proposition 2] is in general not Kéhler and the
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associated almost complex structure J is in general not integrable. In
addition, there is a connection V with torsion on the tangent bundle of
N which is both metric and complex, and the horizontal and vertical
distributions are parallel with respect to this connection. The torsion
of this connection is completely determined by the Riemannian curva-
ture tensor of the base manifold (X, 0). In [SW2], we defined a notion
called Einstein connection (see Definition 2.1]) for a complex and metric
connection on an almost Kahler manifold. In the article, we show:

Theorem 1. Let (X,0) be a Riemannian manifold and (J,w,g) be
the almost Kahler structure defined on the cotangent bundle N = T*Y

with the canonical connection V (see §2). Then the Ricci form p ofﬁ
vanishes. In particular, V is an Finstein connection in the sense of

[SW2].

Given a Lagrangian submanifold M of an almost Kéahler manifold,
we also defined in [SW2] a generalized mean curvature vector field
IEI in terms of the usual mean curvature vector and the torsion T of
V. In addition, we proved that the restriction of i(H)w to M is a

closed one form if V is Einstein. Such a relation is known to be true
on a Lagrangian submanifold of a Kéahler-Einstein manifold in which
V is the Levi-Civita connection. This new characterization allows us
to extend many known results regarding Lagrangian submanifolds of
Kéhler-Einstein manifolds to this more general setting. In particular,
we found the cotangent bundle case to be analogous to the Calabi-Yau
case in the following. Once we fix a Riemannian metric on the base, we
can locally define the Lagrangian angle 6 of a Lagrangian submanifold
by taking the angle between the tangent space 7,M and the tangent
space of the fiber of 7 : T*¥ — ¥ (the vertical distribution) through
any point p € M. The generalized mean curvature vector H is in fact
dual to the form df which up to some constant is the Maslov form with
respect to the canonical symplectic form on T*3. There also exists a
parallel (n,0)-form € as a section of the canonical line bundle on any
cotangent bundle. On a Lagrangian submanifold M C N = T*Y, we
show that (Proposition B.2]) the Lagrangian angle is related to €2 by

e = %(Qar) (1.1)
where * is the Hodge star operator on M.

In [SW2], we also consider the generalized mean curvature flow with

respect to H (see a different generalized Lagrangian mean curvature
flow studied by Behrndt [B]). This is a family of moving submanifolds
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My, t € [0,T) such that the velocity vector at each point is given by the
generalized mean curvature vector of M; at that point. We prove that
the parabolic flow is well-posed and preserves the Lagrangian condition
[SW2]. The above interpretation of H in terms of the Lagrangian
angle indeed gives a heuristic reason why the latter holds on the linear
level. Therefore, the flow gives a canonical Lagrangian deformation in
cotangent bundles.

When ¥ is compact and orientable, a conjecture that is often attributed
to Arnol’d [ALIGLILS] asks if a compact, exact, orientable, embedded
Lagranian M in T*Y can be deformed through exact Lagrangians to
the zero section. We refer to [F'SS| for the current development towards
the conjecture from the perspective of symplectic topology. In relation
to this question, we prove in this paper:

Theorem 2. Suppose that 32 is a compact Riemannian manifold. Sup-
pose My, t € [0,T) is a smooth generalized Lagrangian mean curvature
flow of compact Lagrangians in T*%, if My is exact and of vanishing
Maslov class, so is My for any t € [0,T).

This is proved by computing the evolution equation of the Lagrangian
angle and the Liouville form along the flow. That the connection V is
metric, complex and preserves the horizontal and vertical distributions
is critical in studying the geometry of this flow.

The flow thus presents a natural candidate for the deformation of La-
grangian submanifolds in cotangent bundles. However, it is known that
there are many analytic difficulties even in the original Lagrangian
mean curvature flow case, see [N2,[N3]. As a first step towards un-
derstanding this flow, we focus on the graphical case in this article,
i.e. when M, is defined by du(x,t) for local potentials u(z,t) defined
on (3,0). In particular, we show in Proposition that the flow is
equivalent to the following fully non-linear parabolic equation for u (the
special Lagrangian evolution equation)

ou 1 det(oy; + v —1uy;)

- = n

ot vV -1 \/det 0ij \/det(aij + u;ikaklu;lj)
where w.;; is the Hessian of u(z,t) with respect to the fixed metric o;;.

We prove the following stability theorem of the zero section when the
base manifold is a standard round sphere.

(1.2)

Theorem 3. When (X,0) is a standard round sphere of constant sec-
tional curvature, the zero section in T3 1s stable under the generalized
Lagrangian mean curvature flow.
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Theorem 3 holds when the standard round sphere is replaced by a
compact Riemannian manifold of positive sectional curvature. For the
detailed statement and precise condition, see section §7. In particular,
we show that the generalized Lagrangian mean curvature flow of any
Lagrangian submanifold with small local potential in C? norm (the
smallness can be effectively estimated) exists for all time and converges
to the zero section at infinity. The case when the base metric is flat i.e.
0ij = 0;; is studied in [SWIL|Z/CCHI/CCY]. In these cases, one can use
the unitary group action to convert the condition of small C? norm into
a convexity condition (see section 4 in [SW1] for this transformation).
The convexity condition implies the standard C*® estimate of Krylov
[K] is applicable. In our case the base manifold is no longer flat and no
such transformation exists, and we need to deal with the O estimate
directly. A similar flow for holomorphic line bundles was considered in

[7Y].

The article is organized as follows. In §2, the almost Kéhler geome-
try of cotangent bundles is reviewed and Theorem [ is proved. In §3,
we review the geometry of Lagrangian submanifolds in the cotangent
bundle, in particular we recall the generalized mean curvature vector.
There we derive the relation between the Lagrangian angle and the
parallel (n,0)-form. In §4, we study the evolution equations under the
generalized mean curvature flow in the cotangent bundle and prove
Theorem 2l In §5, we investigate the graphical case in which the La-
grangian submanifold is given by the graph of a closed one-form on
Y. In §6, we compute the evolution equations of different geometric
quantities that will be used in the proof of the stability theorem. In
87, we prove the stability theorem Theorem 3. Readers who are more
interested in the PDE aspect of (L2)) can move directly to §5.

The third named author is grateful to Pengfei Guan for raising the
question about how to generalize the special Lagrangian equation to a
Riemannian manifold. He would like to thank Tristan Collins, Adam
Jacob, Conan Leung, and Xiangwen Zhang for their interests and help-
ful discussions.

2. REVIEW OF THE GEOMETRY OF COTANGENT BUNDLES OF
RIEMANNIAN MANIFOLDS

2.1. The almost Kihler structure (w,J,g) on T*3. We first re-
view the geometry of cotangent bundles, some of which can be found

in [V] or [YI].
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Let (X, 0) be an n-dimensional Riemannian manifold with Riemannian
metric 0. Let {¢’};—1.., be a local coordinate system on X. Let D be
the covariant derivative (connection) and Af; be the Christoffel symbols
of Oij with
Do i = A]?.i.
aq’ Og? 7 Oqk

Let C*);; be the curvature tensor of o;; with

o 0 0 0 0 ;0
(5 3) 3 = PPy ~ ParPaeg = o
Cijkl can be expressed by the Christoffel symbols by
i 8 A 8 % 4 ;D i AD
Cip = 3 A — 2 lA]k—l—A A%y — A A, (2.1)

Let N := T*¥ be the cotangent bundle of ¥. We take the local co-
ordinates {¢’, p,}, 1., on T3 such that on overlapping charts with
coordinates ¢*, p; and ¢', p;, the transformation rule

_ ¢

p’l - aq'z p]
holds. Denote the Liouville form by A = p;dg® so that the canonical
symplectic form by w = >""" , dg" A dp; is given by

w=—d\. (2.2)

Recall that {dq’,0;}i=1. . form a basis for T*(T*X) where

0; =dp; — Aiprdg", i=1,....n (2.3)
that is dual to the basis {X;, aipi}i:l"'" for T(T*X) where
X,-:i+Ak 0 i=1,...,n. (2.4)

- WPk
aq' " oy,

Denote
Xizaika, 1=1,...,n
The bundle projection 7 : T*3» — X then satisfies
0 0
dn(X;) = —, d =0.
(%) oq' " (8172‘)

Thus the connection D generates two distributions 2, ¥ in T(T*Y),
called the horizontal and vertical distributions. We summarize the
properties in the following:
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Proposition 2.1. Let N := T*% for a Riemannian manifold (3, o).
The horizontal distribution 7 C TN s spanned by X" and the vertical
distribution V" by %. In terms of these bases, the Riemannian metric

g=1{(,-) on N (or on the tangent bundle TN of N ) satisfies

o 0 y 0 .
—,— =07, (X',—)=0, and (X' X')=o"Y
<0p,- 5pj> < (9Pj> ( )

In terms of 0; and dq', this metric is

9(,) = () = 070, @ b; + 05dq’ @ dg’.

The almost complex structure J on TN is defined by
w(.’ ) — <J.’ >
and it satisfies
0 0 -
_ X

JX' = J =
api’ Ip; ’

and Jdq' = —a"0;. (2.5)

g is the Sasaki metric [S] on the cotangent bundle N = T*3.

2.2. The connection, the curvature, and the torsion. Now we
recall the connection V (see [V]) on T(T*X) that is compatible with
the Riemannian metric (-,-) and the almost complex structure J (i.e.

the covariant derivative V commutes with J). V is defined by

~_ . . ~ 0
VX' =-Nydg @ X* and V_— = -\, d¢/ @ —

= 2.
8])2 a k ( 6)

From these, we can compute the covariant derivative of any vector field.
For example, by (Z4]), we have

Vo o= A (2.7)

We notice that this connection preserve the horizontal and the vertical
distribution. Also X* and 6%_ are parallel in the fiber direction.

Let R be the curvature tensor of V. Since V is complex and metric,
the Ricci form ﬁ is given by
2n
1 .
Zg (VW) Jeqa,e0) = 5 > w(R(V,W)ea, ea), (2.8)
2 a=1

where e, is an arbltrary orthonormal basis of T'V.
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We recall the definition of an Einstein connection from [SW2]:

Definition 2.1. A metric and complex connection V on an almost
Kahler manifold (N,w, J, g) is called Einstein, if the Ricci form of v
satisfies

p=fw
for some smooth function f on N.
We denote the projection of T'N onto the horizontal distribution ¢ by

m and the projection onto the vertical distribution VY by my. In terms
of d¢* and 6;, we have

7T1:dq2®XZ and 7T2:92‘®i.
Ip;
Since .J interchanges 2 and ¥ we get
J7T1:7T2J, J7T2:7T1J. (29)

With respect to these structures, we define:
Definition 2.2. The n-form 2 is defined as
Q = /deto;(dg" —/=1Jdg") A --- A (dg" — /—1Jdg™).  (2.10)
Q can be viewed as an (n,0)-form in the sense that
QIVL, Vo, oo V) = V=1V, ... V). (2.11)

Proposition 2.2. The (n,0) form Q on N = T*% is parallel with
respect to the connection V.

Proof. We begin by computing §dqi. Consider
(Vdg)(X*) = dldg'(X*)] - dg'(VX*)
= d(o") + A’;qapidqq
= —o"™AL dg’. (2.12)
On the other hand, (Vdg') (%) = 0. Therefore,
Vdq' = =\l dg™ & dg°. (2.13)

The proposition follows by putting the together the above formula and
the following standard calculation

d\/det Oij = A?k\/det O'Z'jdqs.
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2.3. Proof of Theorem [Il. By equation (2.6]), the curvature Rof V
is computed as

D d d i o < R v AR i
R(a—q’f’a_ql)X = V%V%X—V%V%X

o . 0
Likewise,
~( 0 0 0 o . 0 0
= 2 — [ = Af — A” AL AP
i <0qk’ an> Op; (f%’“ gt i+ A ) p;’

Therefore, we have

(9 9N . o aNo ., 0
R(a—qk’a—ql)X ~C X! a“”(aqk aq)a—w i
(2.14)

In view of these relations, the Ricci form p, see (28], vanishes since .J
is an isomorphism between the vertical and horizontal distributions.

3. THE GENERALIZED MEAN CURVATURE AND THE LAGRANGIAN
ANGLE IN COTANGENT BUNDLES

In the last sections we have seen that the cotangent bundle N = T™*Y of
a Riemannian manifold admits a naturally defined almost Kahler struc-
ture (w, J, g) and a canonical connection V¥ that is metric, symplectic
and has torsion T , essentially given by the curvature of the underlying
base manifold (3, ). Moreover the Ricci form p of V vanishes. From
now on we will assume that (NV,w, J, g, %) is such a cotangent bundle.

We now recall the definition of the generalized mean curvature vector
field of a Lagrangian immersion F : M — N and relate it to the
Lagrangian angle through the holomorphic n-form 2 introduced in the
previous section. We shall identify M with the image of the Lagrangian
immersion and refer M as a Lagrangian submanifold when there is no
confusion. Let e;,7 = 1---n be an orthonormal basis with respect to
the induced metric on M by the immersion F'. We recall the generalized
mean curvature form on M is

pe = (Veer, Jer) (3.1)

k
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and the generalized mean curvature vector H is

H= ZMZJQ . (3.2)

Consequently, the generalized mean curvature vector is dual to the
mean curvature form in the sense that

i(H)wlyr = —pu. (3.3)

We recall that the Lagrangian angle of a Lagrangian subspace L in
C™ with respect to another fixed Lagrangian subspace L is given by
the argument of det U where U is a unitary n X nm matrix such that
L, = ULy. Effectively, we choose an orthonormal basis ef, ..., e? for
Ly, a € {0,1}, and set

b
V2

to be the associated holomorphic basis. If €} = %7 e?, then det %7 is the
Lagrangian angle of L; with respect to Ly. We derive a formula for the

Lagrangian angle in terms of arbitrary bases.

a __
i =

(ef —V—=1Jef)

Lemma 3.1. Suppose (V,(-,-)) is a 2n-dimensional (real) inner prod-
uct space with a compatible almost complex structure J (i.e. J is an
isometry and J* = —I). Let Ly be a fived Lagrangian subspace of
V' spanned by vq,...,0,. Suppose Ly is another Lagrangian subspace
spanned by vi,...,v,. Suppose v; = Y0, qiv; + Y0, By Jv; for
1 = 1,...,n. Then the Lagrangian angle 0 of L, with respect to Lg

is the argument of det(cu; + v/ —16:5). In fact, they are related by

det(ay; + vV —18;;)+/det(v;, 7;) VST
det(vi, ’Uj) .

(3.4)

Proof. Direct calculation. O

Note that by this formula the Lagrangian angle is not uniquely defined
but it is defined up to adding an integer multiple of 27.

Suppose F': M — N = T*¥ is a Lagrangian immersion. We consider
the Lagrangian angles with respect to the horizontal distribution ¢
and the vertical distribution 7', which differ by a constant. For our
purpose, we shall use 6 to denote the Lagrangian angle with respect to
the horizontal distribution.
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Proposition 3.1. Suppose a Lagrangian submanifold of N = T*X is
given by F: M — N. Let {F;}i=1.., be an arbitrary basis tangen-
tial to M. Then the Lagrangian angle 8 with respect to the horizontal
distribution is

V=10 = Indet ((E-,Xj>+\/—_1<Fz‘7£>)

1 1
—|—§ Indet o;; — 3 Indet G5,

where Gij = <an F})

Proof. Each F; can be expressed in terms of X7 and p;,

. ) )
F,=(F, X" o X+ { F,, — — .
(B X5) o1y X7+ < apk> Lrm (3:5)

Since JX' = 8%2_, by Lemma B} the Lagrangian angle 6 with respect

to the horizontal distribution spanned by {X*},—;. ., is the argument
of

det ((FZ-,X’f> +V—=1(F, 0 )) .

i
i = BT = oo X o = (F X = 0 U: D) =
USlIlg U; = Eu V; = alea Q5 = <E7X > ) BZJ - <E7 8p’>’ <U17Uj> -
0,5, we obtain the formula from (34]).

U

On the other hand, the Lagrangian angle with respect to the vertical
distribution spanned by {%}jzl... is the argument of
J

0
det ( (P ) = V7L XY ).
Opk
Therefore, the two Lagrangian angles differ by a multiply of 7.

Another way to compute the Lagrangian angle with respect to the

horizontal distribution is to consider the restriction of the (n,0) form
2 to M.

Proposition 3.2. Suppose () is the n-form given by ([2I0Q), then for a
Lagrangian immersion F': M — T3,

#(Qu) = eV,
where x is the Hodge star on M.
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Q(Flv---an)

Proof. Given any basis { F; },—1 ..., tangential to M, x(Q|y) = e

where G;; = (F;, F;). We calculate
(@ = VLI E) = (5, x4 + VT (1)
k

where equation (2.7]) is used. O

Proposition 3.3. For a Lagrangian immersion F' : M — T*Y, the
generalized mean curvature vector and the Lagrangian angle are related

by R
H=JV0

where V is the gradient operator on M with respect to the induced
metric on M.

Proof. In view of (3], (8:2), and Proposition B.2] it suffices to prove

that

dIn(xQ) = /—1p, (3.6)
where *Q = %(2|y). Let ey, ..., e, be an orthonormal frame tangential
to M. Using the fact that €2 is parallel with respect to @, we compute

e (%)) = Q(@eiel, €y .sepn)+ -+ Qe .. .,en_l,ﬁeien).

Since the tangential part of 662.61 only involves eg, ..., e,, the first
term becomes Q((V,e1)t, e, ..., e,). Likewise for other terms. On the

other hand, we have (V.e,)t = (@eiek, Je)Je,. Using the property
that €2 is a holomorphic n-form, see equation (2.11I), we derive
Q((@eiel)l, €2y .y Cp) = v—l(@eiel, Jep) * Q.

Summing up from ¢ = 1,...,n, we arrive at the desired formula. [

4. THE GENERALIZED MEAN CURVATURE FLOW IN COTANGENT
BUNDLES

We derive evolution equations along the generalized mean curvature
flow in cotangent bundles for the Lagrangian angle and the Liouville
form.

Before that, let us recall some facts about the torsion connection from
[SW2]. In Lemma 2 in [SW2], it is shown that the torsion connection

v and the Lev1 Civita connectlon V on N are related by
(4.1)



12 KNUT SMOCZYK, MAO-PEI TSUI, AND MU-TAO WANG
In particular, for a tangent vector field X on a Lagrangian submanifold
M, we have

n

Y (Ve X ) = divyg X + ) (T(er, X), ex). (4.2)

k=1 i=1
where {eg}r—1.., is an orthonormal basis of T M.

We recall that a smooth family of Lagrangian immersions
F:MxI[0,T)— N=T"%
satisfies the generalized mean curvature flow, if

OF ~
E(I,t) = H(z,t), and F(M,0)= M, (4.3)
where H (x,t) is the generalized mean curvature vector of the almost
Lagrangian submanifold M, = F(M,t) at F(x,t). It was proved
in [SW2] that the generalized mean curvature flow preserves the La-
grangian condition. In the following calculations, we fix a local coor-

dinate system (z',---,2") on the domain M and consider F; = 25 =
dF( 6‘;),1' = 1,---,n a tangential basis on the moving submanifolds
M;.

Lemma 4.1. Along the generalized mean curvature flow M, in the
cotangent bundle of a Riemannian manifold, the Lagrangian angle 0
satisfies

o~

—e — NG+ Z ((TH ) e) = (IT(H ) ) (44)
for any orthonormal basis {ey}k=1... on M;.

Proof. We compute 3 2 (xQ2) where *Q = ﬁ and Gy; = (Fj, Fj) is

the induced metric on the Lagrangian submanifold M;:

0 1 0 0

Since €2 is parallel with respect to @, we derive

o _ _
S WP ) = QYR B )+ QF - Fo, Vi F).
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DAecomposng @ﬁF, = (@ﬁFi)L—l—(ﬁﬁFi)T, and noting that (@ﬁFZ)T =
(V5 F;, Fj)GI*F),, we derive that %Q(Fl, ..., F,) is equal to

(VaF, FYGIQF, ... F,)+Q ((ﬁﬁﬂ)i, Fy.. ... Fn)

+ot QBB (VR

On the other hand,

gtl Vet Gy = (V5 Fy, F) (G4,

Therefore,
0 1 S 5 A e 1
_*Q:7|:Q([VF1H+T(H>F1)] >F2a"'7Fn)+'”

ot 1/ det Gij

+Q([F17F277§Fnﬁ+f(ﬁ7Fn)]J—) :

In the rest of the calculation we can choose coordinates z! at any point
of interest so that {F; = e;};=1.... », is orthonormal. We compute

A~ o~

(Ve H): = (V. H, Jey) Jey
and thus

QUV o H, Je) Jex, ea, ... en) = V—1(Ve H, Jer) Q.

We can likewise compute other terms and obtain

8816( \/_Z W Jer) + (T(H er), Jer)) + Q.

or

n

0= (<v ., Jey) + (T(H, ey), Jek>>.

k=1
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Now since VJ = 0 and H = JV6 we have

(98,59 = ;<<§ekﬁ>z]€k>+<f(f[,ek),Jek>)
= Z ((%kV@, ex) + (T(H,eyp), Jek>)

a2 A9+Z< (ex, V), ex) + <T(f1,ek),J6k>)

A9+Z< (JH, ex), ex) — <Jf(f1,ek),ek>).

U

Lemma 4.2. Along a generalized Lagrangian mean curvature flow, the
Liouwville form evolves as

9 .
SF N = d(H)) + . (4.5)

Proof. This follows from the Cartan’s formula that the Lie derivative
is Lx = di(X)+i(X)d. Note that by equations (Z.2]) and ([B.3]) we have
i(H)d\ = —i(H)w = p. O

We recall the statement of Theorem 2 and prove it.

Theorem 2 Suppose My, t € [0,T) is a smooth generalized Lagrangian
mean curvature flow in T*X, if My is exact and of vanishing Maslov
class, so is My for any t € [0,T).

Proof. By differentiating both sides in (4.4]), we see p always changes
by some exact form. This shows vanishing Maslov class is preserved.
Since the Maslov class of M, vanishes for all ¢, the Lagrangian angle
can be chosen to be a single value function 6 for all ¢. Now equation
(@A) can be rewritten as

9 .
o A= d\(H H) + 6)

and we see that being exact is also preserved. O
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5. THE GRAPHICAL CASE

In this section we consider the generalized Lagrangian mean curvature
flow of Lagrangian graphs in the cotangent bundle 7Y of a Riemannian
manifold (X, o) that are induced by 1-forms on X. The graphical case
is interesting from an analytic point of view and can be seen as a "test
case” for the more general non-graphical situation. Let M C T*Y be
the graph of a smooth 1-form n € Q'(3) on X. In this case, we can use
local coordinates ¢',...,¢" on ¥ to parametrize M and the graph of n
defined by

F:E=T1"%, F(q)=(¢n(q)
is Lagrangian if and only if 7 is closed (hence locally exact, i.e. n = du

for a locally defined potential w on ¥). In the sequel we will always
assume that 7 is closed.

We remark the the calculation in this section is non-parametric, as
opposed to the parametric calculation in the last section.

The tangent space to the image of F' is spanned by the basis

Fi=— =X i
8(]2 + j; ap

J

where n;,; = 0in; — Afjnk denotes the covariant derivative of the one-
form n with respect to the fixed background metric o on X.

The Lagrangian angle can be computed in terms of 7;,;.

Proposition 5.1. Suppose M is a Lagrangian submanifold of T*X
defined as the graph of a closed 1-formn € QY(X). Then the Lagrangian
angle 0 of M with respect to to the horizontal distribution is

V=10 _ det(oi; + v=1n;)
\/det Oij \/det(Gw) 7

where 0,5 is the metric on M, n;.; is the covariant deriwative of n with
respect to 0y, and G; = 045 + O'klnk;inl;j 1s the induced metric on M.

&

Proof. This follows from Lemma 3.1 with

OF

= G = X X

v;
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The generalized mean curvature flow of graphs can be expressed locally
as a fully nonlinear parabolic equation for the locally defined potential
function u (with du =n) on X.

Proposition 5.2. Suppose M;, t € [0,T) is a generalized mean cur-
vature flow such that each My is locally given as the graph of a closed
one-form n, with local potential u(-,t) on . The flow is then up to a
tangential diffeomorphism equivalent to

ou 0 1 | det(o;; + v —1uy;)

_— = = n

ot \/—1 \/det O'ij\/det Gij

where o5 is the metric on X, u; = 0;0;u — Af;0pu is the Hessian of u

with respect to 05, and Gi; = 045 + Wi O-klu;[j 18 the induced metric on
M;.

(5.1)

Proof. We parametrize the flow by

ou ou
F(q7t> = (q78—q1(q’t)7’a—q"(q7t)) 9

thus 2L = 2(9u).9 and the mean curvature vector H is computed
ot ot \0q*/ Op;

from (3.3))
0 1\ij 9 k
8ql (G ) (Ujk apk u?JkX )

We claim that the normal part (%) of 2E is

ot
0 Ouy atyig, O xn

Equating coefficients in (%£)*+ = H yields

g(au)_@,
ot gt ¢’

The desired equation is obtained by integration. It suffices to show

that the normal part of 8%_ is
» o . OF
—1\ij ) o ) k\ —1\ij
(G™) (U]k—ﬁpk uX") = (G)7J (—8qj)
which follows from the fact that
0 . OF
—(G7HYI J(=—
o= (GG

is tangential. O
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Remark 5.1. We remark that if M, remains graphical, there are two
ways to parametrize the flow. The first way is the parametric flow in
which the velocity vector at each point is the mean curvature vector
and thus represents a normal motion. We fix a domain manifold and
pull back the induced metric as a time-dependent metric defined on the
domain. In particular, the equations derived in §4 are all with respect to
this parametrization. The second way is the so called “non-parametric
flow” in which the velocity vector is a vertical vector, in fact, the vertical
component of the mean curvature vector. In this case, we may take
the domain manifold to be the base manifold with the fixed background
metric. In the first case, it is natural to pull back a geometric quantity
to the domain and then use the (time-dependent) induced metric to
measure it. In the second case, we project the quantity to the base
manifold and use the fived background metric. All calculations in §6
and §7 are with respect to the non-parametric flow.

6. GRAPHICAL LAGRANGIAN MEAN CURVATURE FLOW IN THE
COTANGENT BUNDLES OF RIEMANNIAN MANIFOLDS

6.1. The special Lagrangian evolution equation on a Riemann-
ian manifold. Let (3, 0) be an n-dimensional Riemannian manifold
with Riemannian metric 0;; in a local coordinate system. Given a
smooth function u on ¥, let u,;; be the Hessian of u with respect to
the base metric o;;. Similarly, .k, ., etc., denote higher order
covariant derivatives of u. From the definition of curvature ([Z1I), we
recall the following commutation formulae:

_ l
Uspgk — Uspkq = U C pak
_ l 1
Uskpgi — Uskpiq = UsipC' kqi T upC pqi (6.1)

_ l l l
Unkpgi — Usmkpiq = UiikpC mgi T UsnipC kqi T (e pqi

du, as a closed one-form, defines a Lagrangian submanifold of the cotan-
gent bundle of ¥.. The Lagrangian angle (with respect to the horizontal
distribution) of the graph of du is defined as

o_ 1 In det(a,-j + v _lu;ij)
v—1 \/det O34 \/det(aij + u;ikaklu§lj) .

(6.2)

The generalized Lagrangian mean curvature flow defined in the previ-
ous section corresponds to the following nonlinear evolution equation
of u.
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Definition 6.1. Let (X, 0) be a Riemannian manifold, a smooth func-
tion u(q,t) defined on X x[0,T) is said to satisfy the special Lagrangian
evolution equation if

“(g,t) = 0(q,t) = n (03 + vV=Tuyj)
ot V=1 /detoij\/det(os; + uinotuy;)

where w.;; is the Hessian of u(q,t) with respect to the fived metric o;;.

(6.3)

Let
Gij = 0yj + U;ikO'klU;lj (64)

be the (0,2) tensor on X and (G~!)¥ be the (2,0) tensor on ¥ such that
Gi;(G71)7* = §F. The following calculation is on the base manifold
Y} and indexes of tensors are raised or lowered by the base metric o
which is time-independent. All derivatives are covariant derivatives
with respect to o;;.

Lemma 6.1. The derivative of 6 is given by

O = (G Py (6.5)

Proof. Define ~;; = 0 ++v/—1u.;j, we compute 7;;07% (o — v/ —Tugy) =
Gy. Thus the inverse of v;; is 09™ (0, — V/—1t) (G™1)P. Therefore

V=10,
. o y
=)k ™ (Ot = V=Tum) (G — §Gm;k(G_l)”
=V —1(G_1)Z]Uy”k
]

Now suppose M, t € [0,T) is a generalized Lagrangian mean curvature
flow such that each M, is given as the graph of a closed one-form n = du.

Taking the derivative of (6.3)), in view of Lemma [6.1], we obtain

0 N
—ug = (G ) Ui, 6.6

g ik = (G7) (6.6)
which is equivalent to the generalized Lagrangian mean curvature flow
by Proposition [5.2]

We first derive the evolution of the length square of du with respect to
the metric o.
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Lemma 6.2. Suppose u is a solution the evolution equation ©3) on a
Riemannian manifold (3,0), then ¥ = o9 u.; satisfies the following
evolution equation:

Eﬁ —(G™H90,; = —20"(G™HPlupu, i +207 (G_l)pchl;qiu;lu;j- (6.7)

Proof. A straightforward calculation using (6.6]) yields
0

Eﬂ = 20" (G upgiu
and
(G045 = 207 (GTHP ! (uiptisjg + Usipgs;).
The desired equation follows from (G.1I).

U

In the following calculation, we often use a normal coordinate system
near a point to diagonalize the Hessian of u. Thus at this point, we

can assume that for each i, j,
—1\ij 61
aij = 0ijy gy = Nidig, Gy = (1+ A])oy, (G = ESD)] (6.8)

where \;,i = 1---n are the eigenvalues of u;.

In the case when the sectional curvatures oy, has a lower bound ¢, we
have the following proposition.

Proposition 6.1. Suppose u is a solution of the evolution equation
@3) on a Riemannian manifold (¥, 0). If the sectional curvatures oy,
of (X,0) satisfy os > ¢ for ¢ € R, then at a point where (6.8) holds
true, we have

9 —1y\ij —~ N - 1 2
a? ~ (G )W < _QZ 1+ A2 23 1 +A2(Zu”)’
i=1 ¢ p=1 P i#p
In particular, if ¥ is compact and ¢ > 0, then fort € [0,T),

¥ < max
t=0

Proof. We simply the right hand side of (6.7) at a point where (6.8))
holds,

o 1
20"(G 1)qu;lzqiu;lu;j = -2 Z T2 (Z Clpipli;pti3).
p=1 P
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We may assume that the coordinate at this point is chosen so that
Cipip = 0 if [ # 4. Note that Cjp,,p # i is the sectional curvature
spanned by the 7 and p directions, and thus by assumption,

g " 1
g -1 l 2
207G ICpgy < =20 75 (3 u) (6.9)
p=1 Pitp
and
o "L\
UZ](G_ )pqu;ipu;jq = ; 1 +Z)\12 .
The last statement follows from the maximum principle. O

Consider the evolution equation of p, where
1 1 1 1
pP=5 Indet G;; — 5 Indet o;; = 5 Indet(o;; + u;ikaklu;lj) ~ 3 In det 0;;.
(6.10)

Lemma 6.3. Suppose u is a solution of the evolution equation (6.3)
on a Riemannian manifold (X,0), then p defined in equation ([GI0)
satisfies the following evolution equation:

J

dp _
a o (G l)kl "
= (G_l)ij(G_l)pqu;kj(El)pqik
1
- (G_l)kl(G_l)pqu;prkUmu;sql - §(G_1)lepq;k(G_l)?ql + (G_l)?qku;pqiu;k

(6.11)

where

= _ l l l l l l
(ul)pqik - u;lkC pqi_l_u;lc ]g_l'u;lpc iqk_l_u;ilc qu‘l‘u;lqc ipk_l_u;lc

Pgi; ipk;q

Proof. We first verify the following two identities:
dp
ot

1
Pikl = u?PTklu;Tq(G_1>pq + U;prku;rql(G_l)pq + §qu;k(G_1)?lq.

[(G_l)pqu;pqik + (G_l)ﬁgu;pqi} u;kj(G_l)ij

(6.12)

By the definition of p and G;;, after symmetrization we get

Op _ Ok & (-1yis
ot = ot Juy (@)Y,
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Differentiating (6.6]), we obtain
3] — 92]'
ot ’
Recall from (63) 0.; = (G~')Pu,,; and differentiate this equation one
more time, we derive

Ok = (G~ l)pq Uipgi + (G7H)P g
This gives the first formula in (€12). On the other hand,
1 — T T
§(qu);k(G Pt and Gy, = WsprkW; g + Uy pUsrgk-

Differentiating one more time, we obtain the second formula in ([6.12]).
To this end, it suffices to compute

(G_l)pqu;pqiku;kj (G_l)ij—(G_l)klu;prklu;rq(G_l)pq = (G (G_l)pq(u;pqik_u;ikpq)u;kj'

We write

Pk =

Uspgik = (Uipgi — Wspiq)sk + (Wiipgh — Usipkg) + (Wsiph — Wiikp)sq + Wsikpg-

Therefore, by the commutation formula for curvature tensor in equation

(61)), we obtain
l l l l
U:pgik = U, lkC + u. lC pqisk + u;lpC iqk + u;ﬂCqu + U;qu ipk + u;lC

pqi + Usikpg

ipk;q
= (Z1)pgik + Wsikpg-

O

We simplify the right hand side of equation (G.I1]) at a point using

E3).

Proposition 6.2. Suppose u is a solution of the evolution equation
©3) on a Riemannian manifold (3,0), then p defined in equation
(61Q) satisfies the following equation at a point where (6.8]) holds true:

dp

5 (G

_Z—1+>\)\ — A ) oy 20% =M
1+A21+A90+A@?mk (T+A2)(14A2) "

1
_'_Z 1+>\2 1+)\2)u?l0 kpk;p

(6.13)
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Proof. We compute those terms that involve the third covariant deriva-
tives w.q first. For any fixed indexes p, ¢, k, we derive

Ap+ A
—hypa _ —Lypr m_y . m —~1ysq _
(G = (G (Um0 tmete) (G7)* = = (1+ ;;2:)(1 i Aﬁ)u;qu
and
Grgk = (Ap + Ag)Uipgh-
Therefore,
Lo - ! (A +Ag)? )
——(G 1)le ,k(G l)linq: - P q U
p;hl 2 e i % 2(L+A2)(14 A2)(L+AZ) »o*
and
- C1\ig (Ap + A Ak )
(G pgu (G719 = — U g
pqzjk kA g (L+A2)(1+A2)(L+ A7) *#

On the other hand,

—1
—1\kl -1 rs o 2
- Z (GG )P MU0t s = Z (1+ )\12))(1 + Az)u;qu‘

D,q,k,l,r,s .9,k

Adding up the last three terms and symmetrizing the indexes p and ¢,
we obtain

Z —14+ XA — (A +Ay) 5

S R0+ o

When the base manifold is flat the indexes ¢ and k are symmetric and
this term is

o Z (1 + )‘p)‘q) u?
(T4 A2)(1+A2)(1+ A2) ™

g,k

This recovers the equation in [SWT].

Now we turn to ambient curvature term, first of all we observe that for
fixed indexes i, k, p, q,
Ak

GGt = Spadik.
;( JoGT) (LT+ M)+ A2) P

Therefore the ambient curvature term becomes
A
(T+ A1+ X2)

(QAkappk _'_ 2)\I?Cpkpk + Z u;lClppk;k _'_ u;lclkpk;p).
l
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Symmetrizing k and p using the symmetry of the curvature operator,
we obtain

_()‘p - )‘k)2 P ()‘k — )‘p) l
2 (ESUES N 2 LD+ ) i ko

p.k Pkl
The first term is non-positive if the sectional curvature of g is.

U

Note that, in view of the definition of p (6.10), at a point where (6.8)
holds,

p:%ln [H(l—i-)\?) :

i=1

If p is close to 0, ); is also small. In this case, the first term on the
right hand side of (6.13]) is negative and we can show that p being close
to 0 is preserved along the flow.

Next, we compute the evolution equation of the third derivatives of u,
which corresponds to the second fundamental forms of the Lagrangian
submanifold defined by du.

Let
0 = (G_l)ip(G_l)jq(G_l)kru;ijku;pqr (6.14)

and
T2 = (G)™ (GG UG wijhmspgrs. (6.15)

Lemma 6.4. Suppose u is a solution of the evolution equation ([63) on
a Riemannian manifold (¥, 0). If the curvature tensor of ¥ is parallel,
©? defined in ([6I4) evolves by the following equation.:

8 2 —1\ms 2

G

=272+ Q(G_l)lp(G_l)]q(G_l)kT(G_l)gbliumsiu;pqr

(G 2(GTHE (GTHYUGHY (GG UG ] wgitipgr + T+ LT+ T,
(6.16)

where
o(Ghyr
ot

) ) ) a G—l kr
(G—l)JQ(G—l)kT’ + (G_l)Zp(G_l)]q%} U5k U:pgr

(6.17)

=2
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o= —(G)™ G (GG + 4GR (G UG wigttpgr

;S

— (G [S(GTHRGETH UG +4GTH)P(GTH UG WijhmUipar,

s

(6.18)
and

1= 2(G™) (GG  tipgr | (G5 it + (G i

5] msj ;

(6.19)

+ (G ™ (2u55Cl g, + 2i1sClp + 2k Clyy + itk Clpgy + il + u;ljkcfmi)] :

Proof. Recall that w.;;;, is symmetric in the 7, j indexes. A straightfor-
ward calculation using this symmetry gives

9 2
a@
—1vip . . ) —1\kr
ZQM(G—l)ﬂq(G—l)kru;ijku;pqr + (G_I)ZP(G_I)Jq%u;ijku;pqr

ot
+2(GTH (GG b,i0ipgr
(6.20)

_'_
[\
@Q
L
~—
3
V)
9
Py
9
N
.
=
9
=
3
£
<
™
3
S
3
Q
o

G™™ [2(GTHE (G UG + (G (GG ]“;ijk“;pqr

;ms

(
+(GTH™ [2(GT)
+(GTH™ (G2 (GHYHGHT + 4GP (G UG wijptispgr
+(GH™ [BG)R(GY UG + 4G PGV UG teijhomUipgr-

(6.21)

Subtracting ([6.21]) from (6.20) and regrouping terms, we derive

d —1\ms
a@z — (G (0%);ms
=—27%+ Z(G_l)ip(G_l)jq(G_l)kr(e;ijk - (G_l)msu;ijkmS)u;pqr
(G G EGTUGT + (GGG wpt +THIL

(6.22)
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Note that
O.i5k :[(G_1>msu;msi];jk
:(G_l)msu;msijk —'— (G_l)?EU;msi + (G_l)?‘?su;msik + (G_l)z’zsu;msij.
(6.23)

Using commutation formulae in equation (6.II), we obtain, under the
assumption of parallel curvature tensor,

Uimsijk
1 / l
= Wijmks + WiimCigp + WitmClgp, + WijiChgp
l ! l l
+ u;lskcimj + u;lkajgj + winClei + uanC

msj msi*

In addition,
Uijmks = Usijkms + u;ljscfmk + uﬂlSC]l'mk'
Thus
Uimsijk — Wiijkms
=150+ u;ilsC]l'mk + UtjmClp, + u;ilmcyl'sk + i1 (6.24)
+u;18kamj + U;lkaij + u;ilkcingj + u;ljkCl

Combing (6.23) and (6.24)), we obtain
(GG UG Oign — (G Wsijhoms ) opgr
= (G—l)ip(G—l)jQ(G—l)kr [(G_l)?;lju;msi + (G_l)?su;msik + (G_l)jzsu;msij

+ (G (2ussClk + 205 Clge + 2tk Clys + Wtk Chigs + WijtClgg, + WitjkCrngi) | Uspar-
(6.25)
]

In the rest of this section, we estimate the right hand side of (€.10). We
introduce another geometric quantity A > 0 to measure the Hessian of
w:

A2 = aijaklu;iku;jl (626)
We prove the following differential inequality.

Proposition 6.3. Suppose u is a solution of the evolution equation
63) on a Riemannian manifold (X, 0). If the curvature tensor of ¥ is
parallel, ©2 defined in ([614) satisfies the following inequality:

0

50— (G (O <~ UL+ AM)O' + (207, (627)
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where A is defined in ([620) and Cy and Cy are constants that depend
only on the dimension of X.

Proof. From
Gij = 0ij + warouy;
we compute that
(G = = (G (wmatly + s ) (GT1)

6.28
= — Wy Umrk [(G_l)p’"(G_l)sq + (G_l)pS(G_l)’"q]. (6.28)
Taking one more derivative, we derive:
(G = — ek [(G_l)pr(G_l)Sq + (G_l)pS(G_l)m]
(6.29)
= ulfu [(G G+ Gy )
3
On the other hand, using agfj = 0, we compute
a;:j = e;ikO'MU;lj + U;ik(fkle;lj .
Differentiating 6.; = (G~')P9u.,,; one more time gives
O.ix = (G_lﬁlgu;pqi + (G_1>pqu;pqik- (6.30)

Within this section, for any positive integer ¢, C; denotes a positive
constant that depends only on the dimension n. At any point where

([G3) holds true A = /> " | A\ and

|ufj| < Aéj, for anyi, j

)\k k k .
T )\iéj\ < 0 for anyk, j

(6.31)

(G ;] =|

From (6.28) and (630), we have
(GO < 28w (G (G,
106 < 281G (G ipgittsorne| + (G M pgin,
and |25 | < 2|6.;]. Thus

ot
a G—l ip L B .
(8715)(67‘ 1)]q(G 1)k Uik Wipgr]

(e (G N (o L (o R U
<C1AO* + C,0°T

|2
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for some constants C7, Cy depending only on n. Similarly,
a(G—l)kr

(G reyn =

U5k U pgr S C1A94 + 02@2T.

Thus ‘]| S ClA@4 + 02@2T.
Similarly, we have

[11] < C3A%0" + C,AO°T.
and

[I11| < C5AO%Y 4 C402.
Using [(GT1)7%] < 2M|uri(GTHPH(GTHT], |ul| < AGY and ([G29), we
have

2(GTH) PG UG (G itmsitispar
—(GTY)™ 2GR (GTYUGTHYT + (GG UG Wighttipar]
<Cr(1+ A*0* + C;ATE?
(6.33)

The right hand side of (6.I6) can thus be bounded from above by
=202 4+ Cu(1 + A*)O* + C15(1 + A)TO? + C140°.

The claim ([6.27) follows from this and the Cauchy-Schwarz inequality.
[

7. PROOF OF THEOREM 3

We give the precise statement of Theorem 3:

Theorem 3 When (X, 0) is a standard round sphere of constant sec-
tional curvature, the zero section in T3 is stable under the generalized
Lagrangian mean curvature flow. Suppose a Lagrangian submanifold
My is the graph of du for a smooth function uw on ¥ and let \; be
the eigenvalues of the Hessian of u with respect to o. There exists a
constant € depending only on n and the curvature of ¥ such that if
[T, (1+A?) < 1+e¢, then generalized Lagrangian mean curvature flow
of My exists smoothly for all time, and converges to the zero section
smoothly at infinity.

Proof. Let y = ieettf’]” = [, (1 + A?). From the condition x <1+,

we have A2 = Y. A7 < e and \;\; < e for 1 < i,j < n. Since the
section curvature of ¢ is positive and the curvature tensor is parallel,
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the evolution equation of p in ([6.11]) implies hat the condition y < 1+¢
is preserved by the generalized Lagrangian mean curvature flow if 3¢ <
1.

In particular, by assuming 3¢ < 1, we obtain the following differential
inequality along the flow:

9p _

ot
In the following calculation, we denote Vg f - Vag = (G f1.9, and
IVaf|? = (G™YHK f.i fu for functions f and g defined on . With p =
%ln X, the last inequality can be turned into a differential inequality of
X:

(G o < (-1 4 3€)0°.

2
% — (G < 2(—1 4 3€)xO? — M. (7.1)

Since A? < ¢, we have
%@2 (GO < ~T2 4+ Ci(1 4+ €0 + (0 (72)

from (621). Let p be a positive number to be determined, we compute:
0

= (e?) — (@ e

_ d _ 0 _
— pXP 1@2(0_1( o (G l)le;kl> + Xp(§@2 _ (G 1)kl(@2);kl>
— p(p = DXP2O%|Vax[* — 2px" "' Vax - Va(0?).
Using (1) and (Z.2) in the above equation, we obtain
0

= (ve?) - (@ (e

< 2(=1+3e)px"O" — p’ X" 0% Vax|* — 2px* "' Vax - Va(0?)
+Xp( Y20y (1 4 )0t + 02@2)
< —2pVa(x"O°) - Vo Inx + p'x* 0% Vx|
—|—<2(—1 +3e)p+ C1(1+ e))x”@4 + Cyx? 2.
Note that we used
Vae(x'0?) - Valnx = px 0% Vax [ + X" 'Vax - Va(0?).

Recall that
1 i
Pk = §(Gij);k(G 1) 7= Z

7

)\iu;iik
14 M2
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and

Verlt =3 Aij Uik Usjjk € 3 Uik + Uk < 02
LTS AN T 24 MDA X)L T

Thus p*xP202|Vex|? = 4p*xPO%|Vpl? < 4p°e2x?PO* where we have

also used the fact that 1 < x . This implies that
0
= (e?) — (@ e

< —2pVa(xP0?) - Valny + (4p262 +2(—1+3€e)p + C1 (1 + e))X2P®4 + CoxPO?,

A

i7j7k

Choose € small enough so that (—1 + 3¢)* — 4C1e*(1 + ¢) > 0 and
1—3e > 0. Then we can find p > 0 so that 4p?e?+2(—1+3¢)p+Cy(1+¢)
is negative. The maximum principle implies that y?©? is uniformly
bounded. Hence ©? is unformly bounded based on the fact that y > 1.
Standard arguments imply that the higher order derivatives of u are
also bounded. This proves the long time existence and convergence
of the generalized Lagrangian mean curvature flow. Using Proposition

GI ¢c=1and ), A\? <e¢, we have

0 y 2¢(n —1)
—0 < (G719, — ————=
ot — ( )70y 1+¢€2
—2(n—1)t .
and ¥ < (max;—o)-e +2 or ¥ = o"u,u,; is sub-exponential decay.

This shows that the section du converges to the zero section. U

Finally, we remark that the stability theorem (Theorem 3) holds true
when the sphere is replaced by a compact Riemannian manifold of pos-
itive sectional curvature. Lemma 6.4 needs to be modified to accom-
modate the covariant derivatives of the curvature tensor. However, the
contribution is of lower order, and Theorem 3 still holds, except that
the constant € depends on the covariant derivatives of the curvature as
well.
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