
QUASI-LOCAL ENERGY IN PRESENCE OF

GRAVITATIONAL RADIATION

PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Abstract. We discuss our recent work [4] in which gravitational radi-
ation was studied by evaluating the Wang-Yau quasi-local mass of sur-
faces of fixed size at the infinity of both axial and polar perturbations
of the Schwarzschild spacetime, à la Chandrasekhar [1].

We compute the Wang-Yau quasi-local mass [7, 8] of “spheres of unit size”
at null infinity to capture the information of gravitational radiation. The
set-up, following Chandrasekhar [1], is a gravitational perturbation of the
Schwarzschild solution, which is governed by the Regge-Wheeler equation
(see below). We take a sphere of a fixed areal radius and push it all the
way to null infinity. The limit of the geometric data is that of a standard
configuration and thus the optimal embedding equation [7, 8, 2] can be
solved.

Let us first consider the axial perturbations. The metric perturbation is
of the form:

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θ(dφ− q2dr − q3dθ)
2.

The linearized vacuum Einstein equation is solved by a separation of variable
Ansatz in which q2 and q3 are explicitly given by the Teukolsky function and
the Legendre function.

In particular,

q3 = sin(σt)
Cµ(θ)

sin θ

(r2 − 2mr)

σ2r4

d

dr
(rZ(−))

for a solution of frequency σ and a separation of variable constant µ. Here
Cµ(θ) is related to the µ-th Legendre function Pµ by

Cµ(θ) = sin θ
d

dθ
(

1

sin θ

dPµ(cos θ)

dθ
).
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After the change of variable

r∗ = r + 2m ln(
r

2m
− 1),

Z(−) satisfies the Regge-Wheeler equation:

(
d2

dr2
∗

+ σ2)Z(−) = V (−)Z(−),

where

V (−) =
r2 − 2mr

r5
[(µ2 + 2)r − 6m],

and µ is a separation of variable constant.
On the Schwarzschild spacetime

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θdφ2,

we consider an asymptotically flat Cartesian coordinate system (t, y1, y2, y3)
with y1 = r sin θ sinφ, y2 = r sin θ cosφ, y3 = r cos θ. Given (d1, d2, d3) ∈ R3

with d2 =
∑3

i=1 d
2
i , consider the 2-surface

Σt,d = {(t, y1, y2, y3) :
3∑
i=1

(yi − di)2 = 1}.

We compute the quasi-local mass of Σt,d as d→∞.

Denote

A(r) =
(r2 − 2mr)

σ2r3

d

dr
(rZ(−)).
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The linearized optimal embedding equation of Σt,d is reduced to two linear
elliptic equations on the unit 2-sphere S2:

∆(∆ + 2)τ = [−A′′(1− Z2
1 ) + 6A′Z1 + 12A]Z2Z3

(∆ + 2)N = (A′′ − 2A′Z1 + 4A)Z2Z3,

where τ and N are the respective time and radial components of the solution,
and Z1, Z2, Z3 are the three standard first eigenfunctions of S2. A′ and A′′

are derivatives with respect to r, and r2 is substituted by r2 = d2 + 2Z1 + 1
in the above equations.

The quasi-local mass of Σt,d with respect to the optimal isometric embed-
ding is then

E(Σt,d) = C2{sin2(σt)E1 + σ2 cos2(σt)E2}+O(
1

d3
),

where E1 and E2 are two integrals on the standard unit 2-sphere, that de-
pend on the solution τ and N of the optimal isometric embedding equation.
Explicitly,

E1 =

∫
S2

(1/2)
[
A2Z2

2 (7Z2
3 + 1) + 2AA′Z1Z

2
3 (3Z2

2 − 1)−N(∆ + 2)N
]

E2 =

∫
S2

[
A2Z2

2Z
2
3 − τ∆(∆ + 2)τ

]
.

In particular,

∂tE(Σt,d) =
σ sin(2σt)C2(θ)

d2
{E1 − σ2E2}+O(

1

d3
).

Let us compare the quasi-local mass on the small spheres Σt,d along a certain
direction to the quasi-local mass of the large coordinate spheres St,r.
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Naively, one may expect to recover ∂tE(St,r) by integrating the energy
radiated away at all directions ∂tE(Σt,d). However, our calculation indicates
that there are nonlinear correction terms from the quasi-local energy that
should be taken into account.

We can also consider the polar perturbation of the Schwarzschild space-
time in which the metric coefficients gtt, grr, gθθ, and gφφ are perturbed
in

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2dθ2 + r2 sin2 θdφ2.

The gravitational perturbation is governed by the Zerilli equation

(
d2

dr2
∗

+ σ2)Z(+) = V (+)Z(+),

where

V (+) =
2(r2 − 2mr)

r5(nr + 3m)2
[n2(n+ 1)r3 + 3mn2r2 + 9m2nr + 9m3],

and n is the separation of variable constant. Again, we compute the quasi-
local mass of spheres of unit-size at null infinity. The calculation is similar
to the axial perturbation case but the result is different as the leading term
is of the order 1

d (as opposed to 1
d2

for axial-perturbation) with nonzero
coefficients. If such a linear perturbation can be realized as an actual per-
turbation of the Schwarzschild spacetime, the result would contradict the
positivity of the quasi-local mass [6, 7, 8]. From this, we deduce the fol-
lowing conclusion: There does not exist any gravitational perturbation of
the Schwarzschild spacetime that is of purely polar type in the sense of
Chandrasekhar [1].

For an actual gravitational perturbation of the Schwarzschild solution,
the vanishing of the 1

d gives a limiting integrand that integrates to zero on
the limiting 2-sphere at null infinity. In fact, the quasi-local mass density ρ
(see [3, equation 2.2]) of Σt,d can be computed at the pointwise level. Up to

an O( 1
d3

) term

ρ = (K − 1

4
|H|2)

− (|H| − 2)2

4
+

1

d2
{1

2
|∇2N |2 + ((∆ + 2)N)2 − 1

4
(∆N)2

− 1

4
(∆τ)2 +

1

2
[∇a∇b(τaτb)− |∇τ |2 −∆|∇τ |2]},

where K is the Gauss curvature of Σt,d. The first line, which integrates

to zero, is of the order of 1
d and is exactly the mass aspect function of

the Hawking mass [5]. The 1
d2

term of the quasi local mass
∫

Σd
ρ dµΣt,d

has contributions from the second and third lines (of the order of 1
d2

), the
1
d2

term of the first line, and the 1
d term of the area element dµΣt,d

. The
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above integral formula is obtained after performing integrations by parts
and applying the optimal embedding equation several times.

To each closed loop on the limiting 2-sphere at null infinity, we can thus
associate a non-vanishing arc integral that is of the order of 1

d , where d is
the distance from the source. We expect the freedom in varying the shape
of the loop can increase the detectability of gravitational waves.
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