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QUASI-LOCAL ENERGY WITH RESPECT TO

DE SITTER/ANTI-DE SITTER REFERENCE

PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Abstract. This article considers the quasi-local conserved quantities with respect to
a reference spacetime with a cosmological constant. We follow the approach developed
by the authors in [25, 26, 7] and define the quasi-local energy as differences of surface
Hamiltonians. The ground state for the gravitational energy is taken to be a reference
configuration in the de Sitter (dS) or Anti-de Sitter (AdS) spacetime. This defines the
quasi-local energy with respect to the reference spacetime and generalizes our previous
definition with respect to the Minkowski spacetime. Through an optimal isometric em-
bedding into the reference spacetime, the Killing fields of the reference spacetime are
transplanted back to the surface in the physical spacetime to complete the definitions of
quasi-local conserved quantities. We also compute how the corresponding total conserved
quantities evolve under the Einstein equation with a cosmological constant.

1. Introduction

In [25, 26, 7], the authors developed the theory of quasi-local energy (mass) and quasi-
local conserved quantities in general relativity with respect to the Minkowski spacetime
reference. In view of recent astronomical observations, the current article embarks on the
study of the corresponding theory with respect to a reference spacetime with a non-zero
cosmological constant. In particular, the quasi-local energy and quasi-local conserved quan-
tities with respect to the dS or AdS spacetime are defined in this article. The construction,
similar to the Minkowski reference case, is based on the Hamilton-Jacobi analysis of the
gravitational action and optimal isometric embeddings. However, the result, not only is
more complicated, but also reveals new phenomenon due to the nonlinear nature of the
reference spacetime. The construction employs ideas developed by the authors in [24] (see
also [22]) for quasi-local mass with respect to the hyperbolic reference.

In the following, we review the definition of the quasi-local energy-momentum in [25, 26]
with respect to the Minkowski spacetime. The main motivation of this definition is the
rigidity property that surfaces in the Minkowski spacetime should have zero mass. As a
result, all possible isometric embeddings X of the surface into R

3,1 are considered and an

Date: March 10, 2016.
P.-N. Chen is supported by NSF grant DMS-1308164, M.-T. Wang is supported by NSF grants DMS-

1105483 and DMS-1405152, and S.-T. Yau is supported by NSF grants PHY-0714648 and DMS-1308244.
This work was partially supported by a grant from the Simons Foundation (#305519 to Mu-Tao Wang).
Part of this work was carried out when P.-N. Chen and M.-T. Wang were visiting the Department of
Mathematics and the Center of Mathematical Sciences and Applications at Harvard University.

1

http://arxiv.org/abs/1603.02975v1


2 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

energy is assigned to each pair (X,T0) of an isometric embedding X and a constant future
timelike unit vector field T0 in R

3,1.
Let Σ be a closed embedded spacelike 2-surface in a spacetime. We assume the mean

curvature vector H of Σ is spacelike and the normal bundle of Σ is oriented. The data
used in the definition of the Wang-Yau quasi-local mass is the triple (σ, |H|, αH ), in which
σ is the induced metric on Σ, |H| is the norm of the mean curvature vector and αH is the
connection one-form of the normal bundle with respect to the mean curvature vector

αH(·) = 〈∇N
(·)

J

|H| ,
H

|H| 〉

where J is the reflection of H through the incoming light cone in the normal bundle.
Given an isometric embedding X : Σ → R

3,1 and a constant future timelike unit vector

field T0 in R
3,1, let X̂ be the projection of X onto the orthogonal complement of T0. We

denote the induced metric, the second fundamental form, and the mean curvature of the

image by σ̂ab, ĥab, and Ĥ, respectively. The Wang-Yau quasi-local energy with respect to
(X,T0) is

E(Σ,X, T0) =
1

8π

∫

Σ̂
ĤdΣ̂− 1

8π

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dΣ,

where θ = sinh−1( −∆τ

|H|
√

1+|∇τ |2
), ∇ and ∆ are the gradient and Laplacian, respectively, with

respect to σ and τ = −〈X,T0〉 is the time function.
In [25, 26], it is proved that, E(Σ,X, T0) ≥ 0 if Σ bounds a spacelike hypersurface in N ,

the dominant energy condition holds in N , and the pair (X,T0) is admissible. The Wang-
Yau quasi-local mass is defined to be the minimum of the quasi-local energy E(Σ,X, T0)
among all admissible pairs (X,T0). In particular, for a surface in the Minkowski spacetime,
its Wang-Yau mass is zero. However, for surfaces in a general spacetime, it is not clear
which isometric embedding would minimize the quasi-local energy. To find the isometric
embedding that minimizes the quasi-local energy, we study the Euler-Lagrange equation
for the critical point of the Wang-Yau energy. It is the following fourth order nonlinear
elliptic equation (as an equation for τ)

− (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = 0 (1.1)

coupled with the isometric embedding equation for X. (1.1) is referred to as the optimal
isometric embedding equation.

The data for the image surface of the isometric embeddingX in the Minkowski spacetime
can be used to simplify the expressions for the quasi-local energy and the optimal isometric
embedding equation. Denote the norm of the mean curvature vector and the connection
one-form in mean curvature gauge of X(Σ) in R

3,1 by |H0| and αH0 , respectively. Let
θ0 = sinh−1( −∆τ

|H0|
√

1+|∇τ |2
). We have the following identities relating the geometry of the
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image of the isometric embedding X and the image surface Σ̂ of X̂ [6].

√
1 + |∇τ |2Ĥ =

√
1 + |∇τ |2 cosh θ0|H0| − ∇τ · ∇θ0 − αH0(∇τ)

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ0|H0| − ∇θ0 − αH0) = 0.

The second identity states that a surface inside R
3,1 is a critical point of the quasi-local

energy with respect to other isometric embeddings back to R
3,1. This can be proved by

either the positivity of the quasi-local energy or a direct computation. We substitute these
relations into the expression for E(Σ,X, T0) and the optimal isometric embedding equation,
and rewrite them in terms of a function ρ and a one-form j with

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2
−
√

|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

,

ja = ρ∇aτ −∇a[sinh
−1(

ρ∆τ

|H0||H| )]− (αH0)a + (αH)a.

In terms of these, the quasi-local energy is

E(Σ,X, T0) =
1

8π

∫

Σ
(ρ+ ja∇aτ)

and a pair (X,T0) of an embedding X : Σ →֒ R
3,1 and an observer T0 satisfies the optimal

isometric embedding equation (1.1) if X is an isometric embedding and

divσj = 0.

In [7], the quasi-local conserved quantity of Σ with respect to a pair (X,T0) of optimal
isometric embedding and a Killing field K is defined to be

E(Σ,X, T0,K) = − 1

8π

∫

Σ

[
〈K,T0〉ρ+ j(K⊤)

]
dΣ

where K⊤ is the tangential part of K to X(Σ).
The article is organized as follows: in Section 2, we gather results for the geometry of

surfaces in the reference spacetime (dS or AdS). In Section 3, we derive a conservation
law for surfaces in the reference spacetime. The conservation law is used in Section 4 to
define the quasi-local energy. In Section 5, the first variation of the quasi-local energy
is derived. In Section 6, the second variation of the quasi-local energy is computed and
we prove that a surface in the static slice of the reference spacetime is a local minimum
of its own quasi-local energy. In Section 7, we define the quasi-local conserved quantities
and evaluate their limits for an asymptotically AdS initial data, and compute how these
conserved quantities evolve under the Einstein equation with a cosmological constant.



4 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

2. Geometry of surfaces in the reference spacetime

In this section, we gather results for the geometry of surfaces in the reference spacetime,
which refers to the dS spacetime or AdS spacetime throughout the article. In a static chart
(t, x1, x2, x3) of the reference spacetime, the metric is of the form

ǧ = −Ω2dt2 + gijdx
idxj (2.1)

where gij is the hyperbolic metric for the AdS spacetime, or the round metric on S3 for the
dS spacetime, and Ω is the corresponding static potential. The metric is normalized such
that the scalar curvature of gij is 6κ where κ is 1 or −1. Denote the covariant derivative
of the static slice by ∇̄ and that of the reference spacetime by D.

The static equation reads:

(−∆̄Ω)gij + ∇̄i∇̄jΩ− ΩRicij = 0

where Ricij is the Ricci curvature of the metric gij . In our case, a static slice is a space
form and gij and Ω satisfy

∇̄2Ω = −κΩg. (2.2)

Consider a surface Σ in the reference spacetime defined by an embedding X from an
abstract surface Σ0 into the reference spacetime. In the static chart, we denote the com-
ponents of X by (τ,X1,X2,X3) and refer to τ as the time function. Let σ be the induced
metric on Σ, H0 be the mean curvature vector of Σ and J0 be the reflection of H0 through
the light cone in the normal bundle of Σ. Denote the covariant derivative with respect to
the induced metric σ by ∇.

Given an orthonormal frame {e3, e4} of the normal bundle of Σ in the reference spacetime
where e3 is spacelike and e4 is future timelike, we define the connection one-form associated
to the frame

αe3(·) = 〈D(·)e3, e4〉. (2.3)

We assume the mean curvature vector of Σ is spacelike and consider the following connec-
tion one-form of Σ in the mean curvature gauge

αH0(·) = 〈D(·)
J0

|H0|
,
H0

|H0|
〉, (2.4)

where J0 is the reflection of H0 through the incoming light cone in the normal bundle.

Let Σ̂ be the surface in the static slice t = 0 given by X̂ = (0,X1,X2,X3) which is

assumed to be an embedding. The surfaces Σ and Σ̂ are canonically diffeomorphic. Let σ̂

be the induced metric on Σ̂, and Ĥ and ĥab be the mean curvature and second fundamental

form of Σ̂ in the static slice, respectively. Denote the covariant derivative with respect to
the metric σ̂ by ∇̂.

The Killing vector field ∂
∂t

generates a one-parameter family of isometries φt of the
reference spacetime and we have from the form of the metric (2.1)

D ∂
∂t

∂

∂xi
=

∂(log Ω)

∂xi
∂

∂t
. (2.5)
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Let C be the image of Σ under the one-parameter family φt. The intersection of C with

the static slice t = 0 is Σ̂. By a slight abuse of terminology, we refer to Σ̂ as the projection
of Σ. We consider the following two vector fields on C. Let va be a coordinate system

on Σ0 and consider the pushforward, X̂∗(
∂

∂va
), of ∂

∂va
to Σ̂ by the embedding X̂ . The

pushforward of X̂∗(
∂

∂va
) to C by the one-parameter family φt gives a vector field, still

denoted by X̂∗(
∂

∂va
) on C. X̂∗(

∂
∂va

) is perpendicular to ∂
∂t

everywhere on C. Similarly, we

consider the pushforward of X∗(
∂

∂va
) to C by the one-parameter family φt.

The function τ can be viewed as a function on Σ0 as well. τa = ∂τ
∂va

is a one-form that

lives on Σ0, as well as Σ and Σ̂, through the canonical diffeomorphism.
As tangent vector fields on C, we have

X∗(
∂

∂va
) = X̂∗(

∂

∂va
) + τa

∂

∂t
. (2.6)

Finally, let ĕ3 be the outward unit normal of Σ̂ in the static slice t = 0. Consider the
pushforward of ĕ3 by the one-parameter family φt, which is denoted by ĕ3 again. Let ĕ4
be the future directed unit normal of Σ normal to ĕ3 and extend it along C in the same

manner. In particular, X∗(
∂

∂va
) is perpendicular to ĕ3 and ĕ4, and X̂∗(

∂
∂va

) is perpendicular

to ĕ3 and ∂
∂t
.

We derive the formulae for comparing various geometric quantities on Σ and Σ̂ in the
remaining part of this section. Denote ∇τ = σabτa

∂
∂vb

and ∇̂τ = σ̂abτa
∂

∂vb
, which are

identified with the corresponding tangent vector fields on Σ and Σ̂, respectively.
We consider σ and σ̂ as two Riemannian metrics on Σ0, which are related as follows:

σab =σ̂ab − Ω2τaτb (2.7)

σab =σ̂ab +
Ω2∇̂aτ∇̂bτ

1− Ω2|∇̂τ |2
. (2.8)

On Σ0, ∇τ and ∇̂τ are related as follows:

∇aτ =
∇̂aτ

1− Ω2|∇̂τ |2
. (2.9)

This follows from a direct computation using equation (2.7) and (2.8).
From (2.9), we derive

(1− Ω2|∇̂τ |2)(1 + Ω2|∇τ |2) = 1. (2.10)

As before, we can extend ∇τ and ∇̂τ along C. Along C,

∇τ = (∇aτ)X∗(
∂

∂va
) and ∇̂τ = (∇̂aτ)X̂∗(

∂

∂va
). (2.11)

Note that along C, ∇τ is perpendicular to ĕ3 and ĕ4 and ∇̂τ is perpendicular to ĕ3 and
∂
∂t
. The following lemma expresses ĕ4 and ∂

∂t
along C in terms of each other.
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Lemma 2.1. Along C, we have

ĕ4 =
√

1 + Ω2|∇τ |2
(

∂
∂t

Ω
+ Ω∇̂τ

)
(2.12)

∂

∂t
=Ω
√
1 + Ω2|∇τ |2ĕ4 − Ω2∇τ, (2.13)

where ∇τ and ∇̂τ are given in (2.11).

Proof. We first prove (2.12). It is easy to see that ∂
∂t

+Ω2∇̂τ is normal to both X∗(
∂

∂va
) =

X̂∗(
∂

∂va
) + τa

∂
∂t

and ĕ3, and thus in the direction of ĕ4. Moreover, its length is

√
Ω2 −Ω4|∇̂τ |2 =Ω

√
1− Ω2|∇̂τ |2 = Ω√

1 + Ω2|∇τ |2

where (2.10) is used in the last equality. This proves (2.12). From (2.12), we derive

〈 ∂
∂t
, ĕ4〉 = −Ω

√
1 + Ω2|∇τ |2. This together with 〈 ∂

∂t
,X∗(

∂
∂vb

)〉 = −τbΩ
2 implies (2.13).

�

In the following proposition, we derive a formula relating the mean curvature Ĥ of Σ̂ to
geometric quantities on Σ. All geometric quantities on Σ and Σ̂ are extended along C by
the integral curve of ∂

∂t
. For Ω = 1, this reduces to equation (3.5) of [26].

Proposition 2.2. Along C,

Ĥ = −〈H0, ĕ3〉 −
Ω√

1 + Ω2|∇τ |2
αĕ3(∇τ). (2.14)

Proof. Note that ĕ3 is the unit outward normal of the timelike hypersurface C. Denote
by π(·, ·) = 〈D(·)ĕ3, ·〉 the second fundamental form of C with respect to ĕ3. The idea
of the proof is to compute the trace of π along C in two different tangent frames of C,

{X̂∗(
∂

∂va
),

∂
∂t

Ω } and {X∗(
∂

∂va
), ĕ4}. Thus

σ̂abπ(X̂∗(
∂

∂va
), X̂∗(

∂

∂vb
))− 1

Ω2
π(

∂

∂t
,
∂

∂t
) = σabπ(X∗(

∂

∂va
),X∗(

∂

∂vb
))− π(ĕ4, ĕ4).

By definition, σ̂abπ(X̂∗(
∂

∂va
), X̂∗(

∂
∂vb

)) = Ĥ and σabπ(X∗(
∂

∂va
),X∗(

∂
∂vb

)) = −〈H0, ĕ3〉.
On the other hand, by (2.5)

π(
∂

∂t
,
∂

∂t
) = − ĕ3(Ω)

Ω
, π(X̂∗(

∂

∂va
), X̂∗(

∂

∂vb
)) = ĥab, and π(

∂

∂t
, X̂∗(

∂

∂va
)) = 0. (2.15)
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We use (2.12) and (2.13) to compute:

1

Ω2
π(

∂

∂t
,
∂

∂t
)− π(ĕ4, ĕ4)

=
1

Ω2
π(

∂

∂t
,
∂

∂t
)− Ω√

1 + Ω2|∇τ |2
π(∇τ , ĕ4)−

1

Ω
√

1 + Ω2|∇τ |2
π(

∂

∂t
, ĕ4)

=− Ω√
1 + Ω2|∇τ |2

〈D∇τ ĕ3, ĕ4〉 − π(
∂

∂t
, ∇̂τ).

π( ∂
∂t
, ∇̂τ) vanishes by (2.15).

�

In addition, we derive an identity for the connection one-form αĕ3 on Σ that relates it

to the second fundamental form of Σ̂.

Proposition 2.3. Along C, the connection one-form αĕ3 on Σ satisfies

(αĕ3)a =
√

1 + Ω2|∇τ |2(Ω∇̂bτ ĥab − ĕ3(Ω)τa) (2.16)

where ĥac on the right hand side is the extension of the second fundamental form of Σ̂ to
C by the one-parameter family φt.

Proof. By definition, (αĕ3)a is

π(X∗(
∂

∂va
), ĕ4)

=π(X̂∗(
∂

∂va
) + τa

∂

∂t
,

√
1 + Ω2|∇τ |2

Ω

∂

∂t
+Ω

√
1 + Ω2|∇τ |2∇̂τ)

=− ĕ3(Ω)τa
√

1 + Ω2|∇τ |2 +Ω
√
1 + Ω2|∇τ |2(∇̂bτ)ĥab.

(2.12) is used in the first equality, and (2.5) and (2.9) are used in the second equality. �

We have the following lemma for the restriction of the static potential to surfaces in the
static slice.

Lemma 2.4. Let Σ be a surface in the static slice. Let ∆ be the Laplace operator of the
induced metric, ĕ3 be the unit outward normal, H0 be the mean curvature, and hab be the
second fundamental form. We have

(∆ + 2κ)Ω =−H0ĕ3(Ω) (2.17)

∇aĕ3(Ω) =hab∇bΩ. (2.18)

Proof. Both equations are simple consequences of (2.2) and the definition of the second
fundamental form. �
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3. A conservation law

Proposition 2.2 leads to the following conservation law for surfaces in the dS or AdS
spacetime. This generalizes Proposition 3.1 of [26].

Proposition 3.1. For any surface Σ in the reference spacetime, we have the following
conservation law:∫

ΩĤdΣ̂ =

∫ [
−Ω
√

1 + Ω2|∇τ |2〈H0, ĕ3〉 − Ω2〈D∇τ ĕ3, ĕ4〉
]
dΣ.

Proof. Multiply (2.14) by Ω and integrate over Σ. By (2.7), the two area forms satisfy

dΣ̂ =
√

1 + Ω2|∇τ |2dΣ. (3.1)

�

To define the quasi-local energy, the right hand side of the conservation law is rewritten
in terms of the mean curvature gauge in the following proposition.

Proposition 3.2. In terms of the connection one-form in mean curvature gauge αH0 , the
conservation law in Proposition 3.1 reads
∫

ΩĤdΣ̂ =

∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2 + div(Ω2∇τ)θ − αH0(Ω

2∇τ)
]
dΣ,

where

θ = − sinh−1 div(Ω2∇τ)

|H0|Ω
√

1 + Ω2|∇τ |2
. (3.2)

Proof. Let θ be the angle between the oriented frames {− H
|H| ,

J
|H|} and {ĕ3, ĕ4}, i.e.

− H0

|H0|
=cosh θĕ3 + sinh θĕ4

J0

|H0|
=sinh θĕ3 + cosh θĕ4.

(3.3)

In particular, we have

〈H0, ĕ4〉 = |H0| sinh θ, −〈H0, ĕ3〉 = |H0| cosh θ, and αH0 = αĕ3 + dθ. (3.4)

To compute 〈H0, ĕ4〉, we start with 〈Dea
∂
∂t
, ea〉 = 0 and then use (2.13) to derive

Ω
√

1 + Ω2|∇τ |2〈Dea ĕ4, ea〉 = 〈DeaΩ
2∇τ, ea〉.

The right hand side is precisely div(Ω2∇τ). As a result,

−〈H0, ĕ4〉 =
div(Ω2∇τ)

Ω
√
1 + Ω2|∇τ |2

and θ is given by (3.2). The proposition now follows from a direct computation. �
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4. Definition of the Quasi-local energy

Now we consider a surface Σ in a general spacetime N . As in [26, 27], a quasi-local energy
is assigned to each pair of an isometric embedding X of Σ into the reference spacetime,
and an observer T0 (a future timelike Killing field). Isometric embeddings into the dS
spacetime and the AdS spacetime are studied in [17]. The set of observers is simply the
orbit of ∂

∂t
under the isometry group of the reference spacetime. See Section 7.2 for more

details in the AdS case.
Let Σ be a surface in a spacetime N . We assume the mean curvature vector H of Σ

is spacelike and the normal bundle of Σ is oriented. The data we use for defining the
quasi-local energy is the triple (σ, |H|, αH ) where σ is the induced metric, |H| is the norm
of the mean curvature vector, and αH is the connection one-form of the normal bundle
with respect to the mean curvature vector

αH(·) = 〈∇N
(·)

J

|H| ,
H

|H| 〉.

Here J is the reflection of H through the incoming light cone in the normal bundle. For an
isometric embedding X into the reference spacetime, we write X = (τ,X1,X2,X3) with
respect to a fixed static chart of the reference spacetime. The quasi-local energy associated
to the pair (X, ∂

∂t
) is defined to be

E(Σ,X,
∂

∂t
) =

1

8π

{∫
ΩĤdΣ̂−

∫ [√
(1 + Ω2|∇τ |2)|H|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H|
√

1 + Ω2|∇τ |2
− Ω2αH(∇τ)

]
dΣ
}
.

(4.1)

Using Proposition 3.2, we have

E(Σ,X,
∂

∂t
) =

1

8π

{∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H0|
√

1 + Ω2|∇τ |2
− Ω2αH0(∇τ)

]
dΣ

−
∫ [√

(1 + Ω2|∇τ |2)|H|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H|
√

1 + Ω2|∇τ |2
− Ω2αH(∇τ)

]
dΣ
}
.

(4.2)

Remark 4.1. For an isometric embedding into the static slice of the AdS spacetime,

E(Σ,X,
∂

∂t
) =

∫
Ω(H0 − |H|)dΣ.

Such an expression was studied in [24, 22]. In particular, the positivity of the above expres-
sion was proved in [22].
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While the above expression seems to depend on the choice of the static chart, we can
rewrite it purely in terms of the isometric embedding X and the observer T0. In fact,
Ω2 = −〈T0, T0〉 and −Ω2∇τ = T⊤

0 , the tangential component of T0 to X(Σ). Thus

Definition 4.2. The quasi-local energy E(Σ,X, T0) of Σ with respect to the pair (X,T0)
of an isometric embedding X and an observer T0 is

8πE(Σ,X, T0)

=

∫

Σ

[√
−〈T⊥

0 , T⊥
0 〉|H0|2 + div(T⊤

0 )2 − div(T⊤
0 ) sinh−1 div(T⊤

0 )

|H0|
√

−〈T⊥
0 , T⊥

0 〉
+ αH0(T

⊤
0 )
]
dΣ

−
∫

Σ

[√
−〈T⊥

0 , T⊥
0 〉|H|2 + div(T⊤

0 )2 − div(T⊤
0 ) sinh−1 div(T⊤

0 )

|H|
√

−〈T⊥
0 , T⊥

0 〉
+ αH(T⊤

0 )
]
dΣ.

where T⊥
0 is the normal part of T0 to X(Σ).

The quasi-local energy is invariant with respect to the isometry of the reference spacetime
if an isometry is applied to both X and T0. As a result, in studying the variation of E, it
suffices to consider the quasi-local energy with respect to a fixed T0 =

∂
∂t
.

The quasi-local energy is expressed in terms of the difference of two integrals. We refer
to the first integral in (4.1) as the reference Hamiltonian and the second integral in (4.1)
as the physical Hamiltonian.

5. First variation of the quasi-local energy

In this section, we compute the first variation of the quasi-local energy. It suffices to
consider the variation of the isometric embedding X while fixing T0 =

∂
∂t
.

Definition 5.1. An optimal isometric embedding for the data (σ, |H|, αH ) is an isometric
embedding X0 of σ into the reference spacetime (dS or AdS) that is a critical point of the
quasi-local energy E(Σ,X, ∂

∂t
) among all nearby isometric embeddings X of σ.

For the Wang-Yau quasi-local energy with the Minkowski reference, the first variation of
the quasi-local energy is computed in Section 6 of [26]. The computation of the variation
of the physical Hamiltonian is straightforward and the main difficulty is to evaluate the
variation of the reference Hamiltonian. In [26], this is done by computing the variation of
the total mean curvature of a surface in R

3 with respect to a variation of the metric. This
becomes more complicated here since the isometric embedding equation also involves the
static potential when the reference is either the dS or AdS spacetime. Instead of following
the approach in [26], we derive the first variation by an alternative approach used in [5].
The idea there is to consider the image X(Σ) in the reference spacetime as a new physical
surface and show that it is naturally a critical point of the quasi-local energy with respect
to other isometric embeddings into the reference spacetime. We first derive the following
result for surfaces in the reference spacetime.



QUASI-LOCAL ENERGY WITH RESPECT TO DE SITTER/ANTI-DE SITTER REFERENCE 11

Theorem 5.2. The identity isometric embedding for a surface Σ in the reference spacetime
is a critical point of its own quasi-local energy. Namely, suppose Σ is in the reference
spacetime defined by an embedding X0. Consider a family of isometric embeddings X(s),
−ǫ < s < ǫ such that X(0) = X0. Then we have

d

ds
|s=0E(Σ,X(s),

∂

∂t
) = 0.

Proof. Denote d
ds
|s=0 by δ and set

H1 =

∫
ΩĤdΣ̂

and

H2 =

∫ [√
(1 + Ω2|∇τ |2)|H0|2Ω2 + div(Ω2∇τ)2

− div(Ω2∇τ) sinh−1 div(Ω2∇τ)

Ω|H0|
√

1 + Ω2|∇τ |2
− Ω2αH0(∇τ)

]
dΣ

.

It suffices to prove that δH1 = δH2, where for the variation of H2, it is understood that H0

and αH0 are fixed at their values at the initial surface X0(Σ) and only τ and Ω are varied.

We compute the variation of H2, rewrite it as an integral on the projection Σ̂, and then
compare with the variation of H1 using the identities in Section 2.

It is convenient to rewrite H1 and H2 in terms of the following two quantities: A =
Ω
√

1 + Ω2|∇τ |2 and B = div(Ω2∇τ). In terms of A and B

H1 =

∫
ĤAdΣ

H2 =

∫ [√
|H0|2A2 +B2 −B sinh−1 B

|H0|A
− αH0(Ω

2∇τ)

]
dΣ.

As a result, we have

δH2 =

∫ [
δA(

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
)

]
dΣ−

∫ [
(δB) sinh−1 B

|H0|A
+ αH0(δ(Ω

2∇τ))

]
dΣ

=I− II

By (3.4) and sinh θ = − B
|H0|A

, integrating by parts gives

II =

∫
[δB(−θ)+αH0(δ(Ω

2∇τ))]dΣ =

∫ [
δ(Ω2∇τ) · ∇θ + αH0(δ(Ω

2∇τ))
]
dΣ =

∫
αĕ3(δ(Ω

2∇τ))dΣ.

On the other hand, we simplify the integrand of I using (3.2),

|H0|2A√
|H0|2A2 +B2

+
B2

A
√

|H0|2A2 +B2
=

√
|H0|2A2 +B2

A
= −〈H0, ĕ3〉.
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Therefore, by (2.14), I is equal to
∫

(−〈H0, ĕ3〉)δAdΣ

=

∫
[Ĥ +

Ωαĕ3(∇τ)√
1 + Ω2|∇τ |2

]δAdΣ

=

∫
ĤδAdΣ +

∫ [
(δΩ)Ω3|∇τ |2 +Ω4∇τ∇δτ

1 + Ω2|∇τ |2 (αĕ3(∇τ)) + (δΩ)Ωαĕ3(∇τ)

]
dΣ.

and

δH2 =

∫
ĤδAdΣ +

∫ [
(δΩ)Ω3|∇τ |2 +Ω4∇τ∇δτ

1 + Ω2|∇τ |2 (αĕ3(∇τ))− αĕ3(ΩδΩ∇τ +Ω2∇δτ)

]
dΣ

=

∫
ĤδAdΣ −

∫
(αĕ3)a(σ

ac − Ω2∇aτ∇cτ

1 + Ω2|∇τ |2 )(ΩδΩτc +Ω2δτc)dΣ

=

∫
ĤδAdΣ +

∫
−(αĕ3)aσ̂

ac(ΩδΩτc +Ω2δτc)dΣ.

(5.1)

Applying Proposition 2.3, the second integral in the last line can be rewritten as

∫ √
1 + Ω2|∇τ |2(ĕ3(Ω)τa − Ω∇̂bτ ĥab)σ̂

ac(ΩδΩτc +Ω2δτc)dΣ

=

∫
[ĕ3(Ω)σ̂

ab − Ωĥab](ΩδΩτaτb +Ω2τaδτb)dΣ̂

=
1

2

∫
[ĕ3(Ω)σ̂

ab − Ωĥab](δσ̂)abdΣ̂.

On the other hand, as ΩdΣ̂ = AdΣ and δdΣ = 0,

δH1 =

∫
ĤδAdΣ +

∫
ΩδĤdΣ̂. (5.2)

To prove δH1 = δH2, by (5.1) and (5.2), it suffices to show
∫

Ω

[
δĤ +

1

2
ĥab(δσ̂)ab

]
dΣ̂ =

1

2

∫ [
ĕ3(Ω)σ̂

ab(δσ̂)ab

]
dΣ̂. (5.3)

We decompose δX̂ into tangential and normal parts to Σ̂. Let

δX̂ = αa ∂X̂

∂va
+ βν.

For the first and second variations of the induced metric (see [26, Section 6] for the Eu-
clidean case), we have

(δσ̂)ab =2βĥab + ∇̂a(α
cσ̂cb) + ∇̂b(α

cσ̂ca) (5.4)

δĤ =− ĥab(δσ̂)ab − ∆̂β − 2κβ + ĥac∇̂aαc + βσ̂abσ̂dcĥacĥbd + ∇̂b(αcĥbc). (5.5)
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We derive from (5.4) and (5.5)

δĤ +
1

2
ĥab(δσ̂)ab = −∆̂β − 2κβ + ∇̂b(αcĥcb). (5.6)

(5.3) is thus equivalent to

∫
Ω[−∆̂β − 2κβ + ∇̂b(αcĥcb)]dΣ̂ =

∫
ĕ3(Ω)[βĤ + ∇̂b(αcσ̂cb)]dΣ̂.

The above equality follows from the following two identities:
∫

ĕ3(Ω)βĤdΣ̂ =

∫
Ω[−∆̂β − 2κβ]dΣ̂ (5.7)

∫
ĕ3(Ω)∇̂b(αcσ̂cb)dΣ̂ =

∫
Ω∇̂b(αcĥcb)dΣ̂, (5.8)

which can be derived by integrating by parts and applying (2.17) and (2.18). �

Definition 5.3. The quasi-local energy density with respect to (X,T0) is defined to be

ρ =

√
|H0|2 + (divΩ2∇τ)2

Ω2+Ω4|∇τ |2
−
√

|H|2 + (divΩ2∇τ)2

Ω2+Ω4|∇τ |2

Ω
√
1 + Ω2|∇τ |2

. (5.9)

We derive the following formula for the first variation of the quasi-local energy.

Theorem 5.4. Let Σ be a surface in a physical spacetime with the data (σ, |H|, αH ). Let
X0 be an isometric embedding of σ into the reference spacetime and let (|H0|, αH0) be the
corresponding data on X0(Σ). Consider a family of isometric embeddings X(s), −ǫ < s < ǫ

such that X(0) = X0. Then we have

d

ds
|s=0E(Σ,X(s),

∂

∂t
)

=
1

8π

∫

Σ
(δτ)div

[
Ω2∇ sinh−1 ρdiv(Ω

2∇τ)

|H0||H| − ρΩ4∇τ +Ω2(αH0 − αH)

]
dΣ

+
1

8π

∫

Σ
δXi∇̄iΩ

[
ρΩ(1 + 2Ω2|∇τ |2)− 2Ω∇τ∇ sinh−1 ρdiv(Ω

2∇τ)

|H0||H| + (αH − αH0)(2Ω∇τ)

]
dΣ,

(5.10)

where δτ = d
ds
|s=0τ(s) and δXi = d

ds
|s=0X

i(s).

Proof. Let A = Ω
√

1 + Ω2|∇τ |2 and B = div(Ω2∇τ). In terms of A and B,

ρ =

√
A2|H0|2 +B2 −

√
A2|H|2 +B2

A2
.
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Write

8πE(Σ,X(s),
∂

∂t
)− 8πE(X0(Σ),X(s),

∂

∂t
)

=

∫ [√
A2(s)|H0|2 +B2(s)−B(s) sinh−1 B(s)

|H0|A(s)
− Ω2(s)αH0(∇τ(s))

]
dΣ

−
∫ [√

A2(s)|H|2 +B2(s)−B(s) sinh−1 B(s)

|H|A(s) − Ω2(s)αH(∇τ(s))
]
dΣ,

where A(s) = Ω(s)
√

1 + Ω2(s)|∇τ(s)|2 and B(s) = div(Ω2(s)∇τ(s)). By Theorem 5.2,

δE(X0(Σ),X, ∂
∂t
) = 0. Therefore, in terms of A and B, 8πδE(Σ,X, ∂

∂t
) is equal to

∫
(δA)(

√
A2|H0|2 +B2 −

√
A2|H|2Ω2 +B)2

A
)dΣ

+

∫
(δB)(sinh−1 B

|H|A − sinh−1 B

|H0|A
) + (αH − αH0)(2ΩδΩ∇τ +Ω2∇δτ)dΣ

A direct computation shows that

sinh−1 B

|H|A − sinh−1 B

|H0|A
= sinh−1[

B

|H||H0|A2
(
√

A2|H0|2 +B2 −
√

A2|H|2 +B2)].

On the other hand,

δA =(δΩ)
1 + 2Ω2|∇τ |2√
1 + Ω2|∇τ |2

+
Ω3∇τ∇δτ√
1 + Ω2|∇τ |2

δB =div(2ΩδΩ∇τ +Ω2∇δτ).

The theorem follows from integration by parts, collecting terms, and δΩ = δXi∇̄iΩ. �

δXi and δτ are constrained by the linearized isometric embedding equation

δXi∇̄iΩ
2τaτb +Ω2(τaδτb + τbδτa) = gijX

i
aδX

j
b + δXk∂kgijX

i
aX

j
b .

6. Second variation and local minimum of the quasi-local energy

First, we prove the following lemma about surfaces in the static slice of the reference
spacetime. A similar and related inequality was obtained in [15].

Lemma 6.1. Let Σ be a convex surface in the static slice of the reference spacetime. Let
H0 and hab be the mean curvature and second fundamental form of Σ. Then for any smooth
function f on Σ, the integral

∫ {
[div(Ω2∇f)]2

H0Ω
− Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ (6.1)

is non-negative and vanishes if and only if f can be smoothly extended to a smooth function
f̄ in the region enclosed by Σ that satisfies

∇̄2(f̄Ω) + κ(f̄Ω)g = 0. (6.2)

In particular, f̄Ω is another static potential (2.2).
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Proof. Let f = F
Ω and ∇f = ∇F

Ω − F∇Ω
Ω2 . We compute

∫
[
[div(Ω2∇f)]2

H0Ω
]dΣ =

∫
[

1

H0Ω
(Ω∆F − F∆Ω)2]dΣ. (6.3)

On the other hand,

−Ω3habfafb = −ΩhabFaFb + habΩb(−
F 2

Ω
Ωa + 2FFa).

Using (2.18), habΩb = ∇be3(Ω), and integrating by parts on Σ, we obtain
∫

(−Ω3habfafb)dΣ =

∫ {
−ΩhabFaFb + e3(Ω)div(

F 2∇Ω

Ω
− 2F∇F )

}
dΣ. (6.4)

Let M be the region on the static slice enclosed by Σ. We need the following Reilly
formula with static potential Ω from [23] (see also [16]):

∫

M

Ω[(∆̄F̄ + 3κF̄ )2 − |∇̄2F̄ + κF̄ g|2]

=

∫ {
Ω(2e3(F )∆F +H0e3(F )2 + habFaFb + 4κFe3(F )) + e3(Ω)(|∇F |2 − 2κF 2)

}
dΣ,

where F̄ is a smooth extension of F to M . Extending F by solving the elliptic PDE
∆̄F̄ +3κF̄ = 0 with boundary data F on Σ = ∂M (see [15] for the solution of the Dirichlet
boundary value problem), we have

−
∫

(ΩhabFaFb)dΣ ≥
∫ {

Ω[2e3(F )∆F +H0e3(F )2 + 4κFe3(F )] + e3(Ω)(|∇F |2 − 2κF 2)
}
dΣ.

Plugging this into (6.4) and expanding Ω2|∇f |2e3(Ω) by replacing f = F
Ω , we obtain

∫ {
−Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ

≥
∫ {

Ω[H0e3(F )2 + 2e3(F )(∆F + 2κF )] + e3(Ω)[
F 2

Ω
(∆Ω− 2κΩ)− 2F∆F ]

}
dΣ.

(6.5)

Replacing e3(Ω) by −∆Ω+2κΩ
H0

by (2.18), we arrive at

e3(Ω)[
F 2

Ω
(∆Ω−2κΩ)−2F∆F ] =

1

H0Ω
[−F 2(∆Ω)2+4κ2Ω2F 2+2FΩ∆F∆Ω+4κΩ2F∆F ].

Plugging this into (6.5) and recalling (6.3), the integral in question, after completing
squares, is equal to ∫

Ω

H0
[∆F + 2κF +H0e3(F )]2dΣ

which is non-negative. It is clear that when the equality holds,

∇̄2(F̄ ) + κ(F̄ )g = 0,

and f̄ = F̄
Ω is a smooth extension of f . �
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We prove that a convex surface in the static slice of the reference spacetime is a local
minimum of its own quasi-local energy.

Theorem 6.2. Suppose X(s) = (τ(s),Xi(s)), s ∈ (−ǫ, ǫ) is a family of isometric embed-
dings of the same metric σ into the reference spacetime such that the image of X(0) is a
convex surface Σ0 in the static slice, then

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) ≥0.

In addition, the equality holds if and only if f = d
ds
|s=0τ(s) can be smoothly extended to a

smooth function f̄ in the region enclosed by Σ0 that satisfies

∇̄2(f̄Ω) + κ(f̄Ω)g = 0.

Proof. Let H0(X(s)) and αH0(X(s)) be the mean curvature vector and the connection 1-
form in mean curvature gauge of the image ofX(s). For simplicity, set δ|H0| = d

ds
|s=0|H0(X(s))|

and δαH0 = d
ds
|s=0αH0(X(s)). Let X̂(s) = (0,Xi(s)) be the projection of X(s)(Σ) onto

the static slice. X̂(s) is an isometric embedding of the metric

σ̂(s)ab = σab +Ω2(s)τa(s)τb(s)

into the static slice and δσ̂ = d
ds
|s=0σ̂(s) = 0, as τ(0) = 0.

From the infinitesimal rigidity of the isometric embeddings into space forms [21] , there

is a family of isometries Â(s) of the static slice with Â(0) = Id such that

δÂ = δX̂

along the surface Σ0. Here we set δÂ = d
ds
|s=0Â(s) and X̂ = d

ds
|s=0X̂(s). Moreover, there

is a family A(s) of isometries of the reference spacetime whose restriction to the static slice

is the family Â(s). Consider the following family of isometric embeddings of σ into the
reference spacetime:

X̆(s) = A−1(s)X(s).

Suppose X̆(s) = (τ̆(s), X̆i(s)) in the fixed static coordinate, we have

d

ds
|s=0X̆

i(s) = 0. (6.6)

We claim that

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) =

d2

ds2
|s=0E(Σ0, X̆(s),

∂

∂t
). (6.7)

Let H0(X̆(s)) and αH0(X̆(s)) be the the mean curvature vector and the connection

1-form in mean curvature gauge of the images of X̆(s).

|H0(X(s))| =|H0(X̆(s))|
αH0(X(s)) =αH0(X̆(s))

(6.8)
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since both are invariant under isometries of the reference spacetime. By (6.6), is easy to
see that

d

ds
|s=0|H̆0(s)| = 0. (6.9)

Moreover, while τ̆(s) is different to τ(s), we have

d

ds
|s=0τ̆(s) =

d

ds
|s=0τ(s) = f (6.10)

sicne τ(0) = 0, A(0) = Id and the static slice is invariant under the action of A(s).

We apply Theorem 5.4 to each of X(s)(Σ) and X̆(s)(Σ) and use (6.8), (6.9) and (6.10) to
differentiate (5.10) one more time. Only the derivative of the term 1

8π

∫
Σ(δτ)div(Ω

2αH0)dΣ
survives after the evaluation at s = 0. We thus conclude that both sides of (6.7) are the
same as

− 1

8π

∫
(δαH0)(Ω

2∇f)dΣ.

It suffices to evaluate the second variation with respect to the family X̆(s). Equivalently,

we may assume, for simplicity, that δX̂ = 0. We follow the computation of δαH0 from [4].

Let e3 = − H0
|H0|

and e4 =
J0
|H̆0|

. From (3.2), (3.3) and δX̂ = 0, we derive

d

ds
|s=0H0 =

div(Ω2∇f)

Ω2

∂

∂t
(6.11)

d

ds
|s=0e3 = −div(Ω2∇f)

Ω2|H0|
∂

∂t
(6.12)

d

ds
|s=0X∗(

∂

∂va
) = fa

∂

∂t
. (6.13)

As a result, we have

d

ds
|s=0e4 = Ω∇f − div(Ω2∇f)

|H0|Ω
e3 (6.14)

which follows from solving the linear system

d

ds
|s=0〈e4,X∗(

∂

∂va
)〉 =0

d

ds
|s=0〈e4, e3〉 =0

along with (6.12) and (6.13).
We are ready to compute the variation of αH0 , which is denoted by α in the remaining

part of the proof.

(δα)a = δ〈Dae3, e4〉
= 〈D∂(δX)

∂va
e3, e4〉+ 〈Da(δe3), e4〉+ 〈Dae3, δe4〉.
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By (6.12) and (6.14), we get

(δα)a = 〈Dfa
∂
∂t
e3, e4〉+ 〈Da

(
−div(Ω2∇f)

|H0|Ω

)
e4, e4〉+ 〈Dae3,Ω∇f − div(Ω2∇f)

|H0|Ω
e3〉

= ∇a

(
div(Ω2∇f)

Ω|H0|

)
+Ωhab∇bf − fae3(Ω).

As a result,

−
∫

(δαH0)(Ω
2∇f)dΣ

=−
∫

Ω2fa[∇a

(
div(Ω2∇f)

Ω|H0|

)
+Ωhab∇bf − fae3(Ω)]dΣ

=

∫ {
[div(Ω2∇f)]2

|H0|Ω
− Ω3habfafb +Ω2|∇f |2e3(Ω)

}
dΣ.

The theorem follows from Lemma 6.1. �

Finally, we evaluate the second variation of the quasi-local energy and show that for
surfaces with spherically symmetric data, namely

σ = r2σ̃, |H| = c > 0 and αH = 0,

there is an isometric embedding into the hyperbolic space H
3 which minimizes the quasi-

local energy with AdS spacetime reference.

Theorem 6.3. Let Σ be a surface in spacetime N with data (σ, |H|, αH ). We assume the
mean curvature vector H of Σ is spacelike and αH = 0. Furthermore, we assume that the
image of an isometric embedding of σ into H

3 is convex.

(i) Suppose the mean curvature of the isometric embedding into H
3 satisfies H0 ≥ |H|.

Then there is an isometric embedding into H
3 which is a critical point of the quasi-

local energy with AdS spacetime reference.
(ii) Suppose the data on Σ is spherically symmetric. Then the above critical point is a

local minimum of the quasi-local energy with AdS spacetime reference.

Proof. For an isometric embedding into H3 as a static slice of AdS, τ = 0 and the quasi-local
energy (4.1) is simply

1

8π

∫
Ω(H0 − |H|)dΣ. (6.15)

The isometric embedding into H
3 is unique up to an isometry of H3. If H0 = |H| every-

where, then the integral vanishes for any choice of static potential. Otherwise, the integral
depends on the isometry which may pick up a different choice of the static potentials Ω.
The choice of the static potential corresponds to choosing a base point on H

3. Hence, the
integral

∫
Ω(H0−|H|)dΣ becomes a function on H

3. Assuming H0 ≥ |H| and they are not
equal everywhere, this function is positive, proper and convex since the static potentials
approach infinity at the infinity of H3. Hence, there is a unique choice of Ω that minimizes
the quasi-local energy among all the static potentials. Equivalently, if we pick a fixed static
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potential, then there is a unique isometric embedding X0 such that for any other isometric
embedding X into H

3, we have

E(Σ,X,
∂

∂t
) ≥ E(Σ,X0,

∂

∂t
).

In particular, for any family, Â(s), of isometries of H3 with Â(0) = Id, we have
∫

δÂ(Ω)(H0 − |H|)dΣ =0
∫

δ2Â(Ω)(H0 − |H|)dΣ ≥0

(6.16)

where δÂ = d
ds
|s=0Â(s) and δ2Â = d2

ds2
|s=0Â(s) are vector fields on H

3.

Consider a family of isometric embeddings X(s) = (τ(s),Xi(s)) of Σ into AdS where
X(0) is the above isometric embedding into H

3. Let H0(s) and αH0(s) be the mean
curvature vector and connection 1-form in mean curvature gauge of the image of X(s). For
simplicity, let δτ = d

ds
|s=0X

0(s), δ|H0| = d
ds
|s=0|H0(s)| and δαH0 = d

ds
|s=0αH0(s). Similarly,

set δΩ = d
ds
|s=0Ω(s) and δ2Ω = d2

ds2
|s=0Ω(s).

Let X̂(s) = (0,Xi(s)) be the projection of X(s)(Σ) onto the static slice. X̂(s) is an
isometric embedding of the metric

σ̂(s)ab = σab +Ω2(s)τa(s)τb(s)

into H
3. Set δσ̂ = d

ds
|s=0σ̂(s) and δ2σ̂ = d2

ds2
|s=0σ̂(s). We have

δσ̂ =0

δ2σ̂ab =Ω2(0)δτaδτb.
(6.17)

The first variation of the quasi-local energy is

d

ds
|s=0E(Σ0,X(s),

∂

∂t
) =

1

8π

∫
(δΩ)(H0 − |H|) + Ω(δ|H0|)dΣ.

From (6.17) and the infinitesimal rigidity of isometric embeddings into H
3, there is a family

Â(s) of isometries of H3 with Â(0) = Id such that

δÂ = δX̂. (6.18)

We conclude that the first term vanishes from (6.16). We conclude that δ|H0| = 0 as in
the proof of Theorem 6.2. This proves part (i).

For part (ii), it is easy to see that for surfaces with spherical symmetric data, the mean
curvature of the image of isometric embeddings into H

3 is constant and the critical point
obtained in part (i) is precisely such that Ω is constant on the image.

As in the proof of Theorem 6.2, we consider the family A(s) of isometries of the AdS

spacetime whose restriction to the static slice is the family Â(s) and consider the following
family of isometric embeddings of σ into the AdS spacetime:

X̆(s) = A−1(s)X(s).
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As in the proof of Theorem 6.2, we apply Theorem 5.4 to each of X(s)(Σ) and X̆(s)(Σ)
and use (6.8), (6.9) and (6.10) to differentiate (5.10) one more time. In this case, H0 6= |H|
at s = 0, and we derive that

d2

ds2
|s=0E(Σ0,X(s),

∂

∂t
) =

d2

ds2
|s=0E(Σ0, X̆(s),

∂

∂t
) +

1

8π

∫
δ2Â(Ω)(H0 − |H|)dΣ (6.19)

and

d2

ds2
|s=0E(Σ0, X̆(s),

∂

∂t
)

=
1

8π

∫
(δ2X̆i∇̄iΩ)(H0 − |H|)dΣ +

1

8π

∫
Ω3(H0 − |H|)|∇δτ |2dΣ

+
1

8π

∫
(
H0 − |H|
ΩH0|H| )[div(Ω

2∇δτ)]2dΣ− 1

8π

∫
(δαH0)(Ω

2∇δτ)dΣ.

(6.20)

From (6.16), we conclude ∫
δ2Â(Ω)(H0 − |H|)dΣ ≥ 0.

The second and third term on the right hand side of (6.20) are manifestly non-negative
since H0 ≥ |H|. The last term is non-negative as in the proof of Theorem 6.2. It suffices

to show that the first term is also non-negative. We decompose δ2X̆i into its tangential
and normal parts to X(0)(Σ). Let

δ2X̆i = αa ∂X̂
i(0)

∂va
+ βνi.

Since Ω is a constant on the image of X̂ , integrating over Σ gives
∫

(δ2X̆i∇̄iΩ)(H0 − |H|)dΣ =

∫
βν(Ω)(H0 − |H|)dΣ.

In terms of α and β, the second variation of the isometric embedding equation is

2βhab +∇aαb +∇bαa = 2Ω2δτaδτb. (6.21)

Taking the trace of (6.21) and integrating, we conclude that
∫

βH0dΣ ≥ 0.

In particular,
∫
βdΣ ≥ 0 since H0 is a constant. It follows that

∫
βν(Ω)(H0 − |H|)dΣ ≥ 0

since ν(Ω), H0 and |H| are all positive constants. �
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7. Quasi-local/total conserved quantities

The reference spacetime admits 10 dimensional Killing fields. In addition to the quasi-
local energy corresponding to observers, a quasi-local conserved quantity corresponding to
each Killing field is defined. We follow the approach in [7] to use an isometric embedding
to transplant Killing fields of the reference spacetime back to the 2-surface of interest in
a physical spacetime. The quasi-local energy can be written in terms of the quasi-local
energy density ρ in (5.9) and the quasi-local momentum density j, see (7.1) below. In
the second subsection, we evaluate the limits of the quasi-local conserved quantities on an
asymptotically AdS initial data set and prove that the limits agree with the total conserved
quantities of such an initial data. In the third subsection, we show that the limit of the
quasi-local energy is the linear function dual to the total conserved quantities and in the last
subsection, we compute the evolution of the total conserved quantities under the Einstein
equation.

7.1. Quasi-local conserved quantities. We rewrite the quasi-local energy in terms of ρ
(5.9) using the expression (4.2). This is a straightforward computation involving only basic
identities of the inverse hyperbolic functions. For the case Ω = 1, this is carried out in
details in Section 4 of [5] for the Wang-Yau quasi-local energy. After some simplifications,
the quasi-local energy in terms of ρ is

E(Σ,X, T0)

=
1

8π

∫

Σ

[
ρ(Ω2 +Ω4|∇τ |2) + div(Ω2∇τ) sinh−1(

ρdiv(Ω2∇τ)

|H0||H| )− αH0(Ω
2∇τ) + αH(Ω2∇τ)

]
dΣ

Let j be the quasi-local momentum density one-form:

j = ρΩ2dτ − d[sinh−1(
ρdiv(Ω2∇τ)

|H0||H| )]− αH0 + αH . (7.1)

We are ready to define the quasi-local conserved quantity with respect to a pair (X,T0)
and a Killing field K.

Definition 7.1. The quasi-local conserved quantity of Σ with respect to a pair (X,T0) and
a Killing field K in the reference spacetime is

E(Σ,X, T0,K) = − 1

8π

∫

Σ

[
〈K,T0〉ρ+ j(K⊤)

]
dΣ (7.2)

where K⊤ is the tangential part of K to X(Σ), and ρ defined in (5.9) and j defined in
(7.1).

In particular, when K = T0, E(Σ,X, T0, T0) recovers the quasi-local energy E(Σ,X, T0)
since the tangential part of T0 to X(Σ) is −Ω2∇τ and 〈T0, T0〉 = −Ω2.

7.2. Total conserved quantities for an asymptotically AdS spacetime. In this
subsection, we evaluate the large sphere limit of the quasi-local conserved quantities for
asymptotically AdS initial data sets and show that their limits recover the total conserved
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quantities for asymptotically AdS initial data sets considered by previous authors. See for
example [1, 2, 3, 10, 12, 11, 13, 14, 18, 28, 29].

We first review the AdS spacetime and its Killing fields. Take R
3,2 with the coordinate

system (y0, y1, y2, y3, y4) and the metric

−(dy4)2 +

3∑

i=1

(dyi)2 − (dy0)2.

AdS can be identified with the timelike hypersurface given by

−(y4)2 +

3∑

i=1

(yi)2 − (y0)2 = −1.

Note that the group SO(3, 2) leaves this hypersurface invariant and thus the isometry
group of AdS is SO(3, 2), which is 10 dimensional.

The static chart of AdS comes from the following parametrization:

y0 =
√

1 + r2 sin t

yi = rx̃i

y4 =
√

1 + r2 cos t.

We have the following basis for the Killing vector fields: the time translating Killing field
∂
∂t

= y4 ∂
∂y0

− y0 ∂
∂y4

, the first set of boost fields

pi = yi
∂

∂y0
+ y0

∂

∂yi
, (7.3)

the second set of boost fields

ci = yi
∂

∂y4
+ y4

∂

∂yi
, (7.4)

and the rotation Killing fields jk = ǫijky
i ∂
∂yj

.

In the static chart of AdS, the metric is of the form

−(1 + r2)dt2 +
dr2

1 + r2
+ r2(dθ2 + sin2 θdφ2).

The static slice t = 0 is totally geodesics and the induced metric is the hyperbolic metric.
We consider asymptotically AdS initial data sets as follows:

Definition 7.2. An initial data (M,g, k) is said to be asymptotically AdS if there exists a
compact subset K of M such that M\K is diffeomorphic to a finite union of ends ∪(H3\Bα)
where each Bα is a geodesic ball in H

3. On each end, under the diffeomorphism, the metric
g takes the form:

g = grrdr
2 + 2gradrdu

a + gabdu
adub,

where

grr =
1

r2
− 1

r4
+

g
(−5)
rr

r5
+O(r−6), gra = O(r−3), gab = r2σ̃ab +

g
(−1)
ab

r
+O(r−2),
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and
krr = O(r−5) kra = k(−3)

ra +O(r−4), kab = k
(−1)
ab +O(r−2).

Let Σr be the coordinate spheres on an end of an asymptotically AdS initial data set.
In the following theorem, we evaluate the limit of the quasi-local conserved quantities in
terms of the expansion of g and k.

Theorem 7.3. Let (M,g, k) be an asymptotically AdS initial data set as in Definition
7.2 and Σr be the coordinate spheres on an end. Let Xr be the isometric embedding of
Σr into the static slice t = 0 of the AdS spacetime such that yi(Xr) = rx̃i + O(1) and
Ω(Xr) = r +O(1). We have

lim
r→∞

E(Σr,Xr,
∂

∂t
,
∂

∂t
) =

1

8π

∫ [
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2 (7.5)

lim
r→∞

E(Σr,Xr,
∂

∂t
, pi) =

1

8π

∫
x̃i
[
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2 (7.6)

lim
r→∞

E(Σr,Xr,
∂

∂t
, ci) =− 1

8π

∫
x̃i∇̃ak(−3)

ra dS2 (7.7)

lim
r→∞

E(Σr,Xr,
∂

∂t
, ji) =

1

8π

∫
x̃i
(
ǫ̃ab∇̃bk

(−3)
ra

)
dS2. (7.8)

Proof. First, we compute the expansion of (σ, |H|, αH ) on Σr in the following lemma.

Lemma 7.4. On Σr, we have the following expansions:

σab =r2σ̃ab +
g
(−1)
ab

r
+O(r−2) (7.9)

|H| =2 +
1

r2
− g

(−5)
rr + 3

2trS2g
(−1)
ab

r3
+O(r−4) (7.10)

(αH)a =− k
(−3)
ra

r2
+O(r−3). (7.11)

Proof. The computation of |H| is the same as in Lemma 3.1 of [8] for an asymptotically
hyperbolic initial data set. The only difference is that, in the asymptotically AdS case,
〈H, e4〉 = O(r−3) and does not contribute. For αH , we recall from [27] that

(αH)a = −k(e3, ∂a) +∇aθ

where

sinh(θ) =
−〈H, e4〉

|H| .

The formula follows since the leading term of e3 is r ∂
∂r
. �

We are now ready to evaluate the limits of the quasi-local conserved quantities. The
static slice t = 0 corresponds to the hypersurface y0 = 0. We have y4 = Ω,

ρ =
H0 − |H|

Ω
and j = αH .
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For the conserved quantities corresponding to ∂
∂t

and pi, we observe that they are normal
to the hypersurface and the term in (7.2) that involves the quasi-local momentum density
j vanishes. As a result,

lim
r→∞

E(Σr,Xr,
∂

∂t
,
∂

∂t
) =

1

8π
lim
r→∞

∫
Ω(H0 − |H|)dΣr

lim
r→∞

E(Σr,Xr,
∂

∂t
, pi) =

1

8π
lim
r→∞

∫
yi(H0 − |H|)dΣr

since

〈 ∂
∂t

,
∂

∂t
〉 = −Ω2 and 〈 ∂

∂t
, pi〉 = Ωyi.

From (7.9) for σab and the linearized isometric embedding equation, we conclude that

H0 = 2 +
1

r2
+O(r−4).

(7.5) and (7.6) follow from (7.10).
On the other hand, ci and ji are normal to ∂

∂t
. As a result, for the conserved quantities

corresponding to these vector fields, the term in (7.2) that involves the quasi-local energy
density ρ vanishes. Hence,

lim
r→∞

E(Σr,Xr,
∂

∂t
, ci) =− 1

8π
lim
r→∞

∫
αH(Ω∇yi − yi∇Ω)dΣr

lim
r→∞

E(Σr,Xr,
∂

∂t
, ji) =− 1

8π
lim
r→∞

∫
αH(Ωǫkjiy

k∇yj)dΣr.

(7.7) and (7.8) follow from (7.11),

(
∂

∂yi
)⊤ = ∇yi and (

∂

∂y4
)⊤ = −∇Ω.

�

This leads to the following definition for the total conserved quantities for an asymptot-
ically AdS initial data set.

Definition 7.5. For an asymptotically AdS initial data set in the sense of Definition 7.2,
the 10 total conserved quantities E, P i, Ci and J i corresponding to ∂

∂t
, pi, ci and ji,

respectively, are defined to be

E =
1

8π

∫ [
g(−5)
rr +

3

2
trS2g

(−1)
ab

]
dS2 (7.12)

P i =
1

8π

∫
x̃i(g(−5)

rr +
3

2
trS2g

(−1)
ab )dS2 (7.13)

Ci =
1

8π

∫
x̃i∇̃ak(−3)

ra dS2 (7.14)

J i =
1

8π

∫
x̃i
(
ǫ̃ab∇̃bk

(−3)
ra

)
dS2. (7.15)
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Total conserved quantities (or global charges) of asymptotically AdS initial data sets
have been studied extensively using the Hamiltonian of asymptotically Killing fields [1, 2,
10, 12, 11, 13, 14, 18, 28, 29]. We review the construction below and prove that they are the
same as the total conserved quantities in Definition 7.5 under the asymptotic assumptions
in Definition 7.2.

Let K be a Killing field of the AdS spacetime. Let V and Y be the normal component
and the tangential component of K to the static slice of the AdS spacetime, respectively.
The Hamiltonian H(V, Y ) corresponding to K is

H(V, Y ) = lim
r→∞

1

8π

∫

Σr

[Ui(V ) + Vi(Y )]νidΣr (7.16)

where

Ui(V ) =V gjl∂jgil +DjV (gij − gH
3

ij ),

Vi(Y ) =(kij − trk gij)Y
j.

Proposition 7.6. For asymptotically AdS initial data sets with expansion given in Def-
inition 7.2, the total conserved quantities in Definition 7.5 agree with the total conserved
quantities (global charges) in (7.16).

Proof. In [19], Miao, Tam and Xie compute the limit of the Brown-York mass and prove
that

1

8π
lim
r→∞

∫
r(H0 − h)dΣr =H(V (

∂

∂t
), Y (

∂

∂t
)),

1

8π
lim
r→∞

∫
rx̃i(H0 − h)dΣr =H(V (pi), Y (pi))

where h is the mean curvature of Σr in M . We conclude that

E =H(V (
∂

∂t
), Y (

∂

∂t
)),

P i =H(V (pi), Y (pi)),

since h− |H| = O(r−6).
For Ci and J i, we observe that ci and ji are tangent to the static slice t = 0 and it is

easy to see that

Ci =H(V (ci), Y (ci))

J i =H(V (ji), Y (ji)).

�

We compare the conserved quantities for asymptotically AdS initial data sets to the
conserved quantities for asymptotically hyperbolic initial data sets we studied in [8]. (7.12)
and (7.13) resemble the total energy-momentum for the hyperbolic case (see Definition 1.4
of [8]). However, the second fundamental form k does not contribute to them in the AdS
case. The total angular momentum in (7.15) is the same as the total angular momentum
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for the hyperbolic case (see Theorem 7.3 of [8]). The total conserved quantity Ci does not
seem to have a good analogy in the hyperbolic case; It is rather different from the center
of mass in Theorem 7.3 of [8].

7.3. Limit of the quasi-local energy. In this subsection, we evaluate the limit of the
quasi-local energy at the infinity of asymptotically AdS initial data sets and show that it
converges to the linear function dual to the total conserved quantities. First, we derive an
expression for the limit of quasi-local energy E(Σr,Xr, T0) for a family of surfaces Σr and
a family of isometric embeddings Xr of Σr into the reference spacetime. Then we apply the
result to the family of coordinate spheres at the infinity of an asymptotically AdS initial
data set.

Theorem 7.7. Let Σr be a family of surfaces and Xr be a family of isometric embeddings
of Σr into the reference spacetime. Suppose the mean curvature vectors H of Σr and H0

of Xr(Σr) are both spacelike for r > R0 and

lim
r→∞

|H|
|H0|

= 1.

Then the limit of E(Σr,Xr, T0) is the same as the limit of

1

8π

∫ [
−〈T0,

J0

|H0|
〉(|H0| − |H|) + (αH0 − αH)(T⊤

0 )

]
dΣr

as long as the limits exist.

Proof. Let x = |H|
|H0|

and

Y =
div(T⊤

0 )

|H0|
√

−〈T⊥
0 , T⊥

0 〉
.

In terms of x and Y , the quasi-local energy is

E(Σr,Xr, T0)

=
1

8π

∫

Σr

|H0|
√

−〈T⊥
0 , T⊥

0 〉
[√

1 + Y 2 −
√

x2 + Y 2 − Y sinh−1 Y + Y sinh−1 Y

x

]
dΣr

+
1

8π

∫

Σr

(αH0 − αH)(T⊤
0 )dΣr.

Let

f(x) =
√

x2 + Y 2 − Y sinh−1 Y

x
.

For x close to 1, we have

f(1)− f(x) = (1− x)
√

1 + Y 2 +O((1− x)2).
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We compute

lim
r→∞

1

8π

∫

Σr

|H0|
√

−〈T⊥
0 , T⊥

0 〉
[√

1 + Y 2 −
√

x2 + Y 2 − Y sinh−1 Y + Y sinh−1 Y

x

]
dΣr

= lim
r→∞

1

8π

∫

Σr

|H0|
√

−〈T⊥
0 , T⊥

0 〉(1− x)
√

1 + Y 2dΣr

= lim
r→∞

∫

Σr

(|H0| − |H|)
√

−〈T⊥
0 , T⊥

0 〉
√

1 +
div(T⊤

0 )2

−〈T⊥
0 , T⊥

0 〉|H0|2
dΣr

Recall that

T⊥
0 =

√
−〈T⊥

0 , T⊥
0 〉ĕ4

and

−〈T0,
J0

|H0|
〉 =−

√
−〈T⊥

0 , T⊥
0 〉〈ĕ4,

J0

|H0|
〉

=
√

−〈T⊥
0 , T⊥

0 〉
√
1 +

div(T⊤
0 )2

−〈T⊥
0 , T⊥

0 〉|H0|2
,

where (3.2) and (3.3) are used in the last equality. This finishes the proof of the theorem.
�

We are ready to show that for an asymptotically AdS initial data set, the large sphere
limit of the quasi-local energy is the linear function dual to the total conserved quantities
in Definition 7.5.

Theorem 7.8. Let (M,g, k) be an asymptotically AdS initial data set and Σr be the coor-
dinate spheres. Let Xr be an isometric embedding of Σr into the static slice t = 0 of the
AdS spacetime such that yi(Xr) = rx̃i+O(1) and Ω(Xr) = r+O(1). Consider the observer

T0 = A(y0
∂

∂y4
− y4

∂

∂y0
) +Bk(y

k ∂

∂y0
+ y0

∂

∂yk
) +Dk(y

k ∂

∂y4
+ y4

∂

∂yk
) + Fkǫijky

i ∂

∂yj
.

We have
lim
r→∞

E(Σr,Xr, T0) = AE +BkP
k +DkC

k + FkJ
k.

where E, P k, Ck and Jk are the total conserved quantities.

Proof. Recall that the static slice t = 0 is the same as the hypersurface y0 = 0. The Killing
fields y0 ∂

∂y4
− y4 ∂

∂y0
and yk ∂

∂y0
+ y0 ∂

∂yk
are normal to the hypersurface. On the other hand,

ǫijky
i ∂
∂yj

and yk ∂
∂y4

+ y4 ∂
∂yk

are tangent to the hypersurface. As a result,

−〈T0,
J0

|H0|
〉 = −〈T⊥

0 ,
J0

|H0|
〉 = r(A+Bix̃

i) +O(1).

It is also easy to verify that

(T⊤
0 )a = r2(Dkx̃

k
a + Fkǫijkx̃

ix̃ja) +O(r).

The theorem follows directly from Theorem 7.3 and Theorem 7.7. �
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7.4. Evolution of the total conserved quantities under the Einstein equation. In
this subsection, we study the evolution of the total conserved quantities for asymptotically
AdS initial data sets under the Einstein equation.

We assume that the initial data set (M,g, k) satisfies the vacuum constraint equation
(with cosmological constant κ = −1)

R(g) + (trgk)
2 − |k|2 =− 6

∇̄ikij − ∂j(trgk) =0
(7.17)

where ∇̄ is the covariant derivative with respect to g.
We shall fix an asymptotically flat coordinate system onM with respect to (gij(0), kij(0))

and consider a family (gij(t), kij(t)) that evolves according to the vacuum Einstein evolution
equation (with cosmological constant κ = −1)

∂tgij = −2Nkij + (Lγg)ij

∂tkij = −∇̄i∇̄jN +N
(
Rij + gij + (trk)kij − 2kilk

l
j

)
+ (Lγk)ij

(7.18)

where N is the lapse function, γ is the shift vector, and L is the Lie derivative.

Theorem 7.9. Let (M,g, k) be an asymptotically AdS initial data set. Let (M,g(t), k(t))
be the solution to the vacuum Einstein equation with g(0) = g and k(0) = k, and with lapse

N =
√
r2 + 1 and a vanishing shift vector. Let E(t), P i(t), Ci(t) and J i(t) be the total

conserved quantities for (M,g(t), k(t)) defined in Definition 7.5. We have

∂tE(t) =0

∂tP
i(t) =−Ci(t)

∂tC
i(t) =P i(t)

∂tJ
i(t) =0.

Remark 7.10. The evolution equations for E and P i are proved previously in [3, Theorem
5.1] with a different convention for Ci.

Proof. Let h(t) be the mean curvature of Σr in the hypersurface (M,g(t)) and H(t) be the
mean curvature vector of Σr in the spacetime. We have |H(t)| = h(t) + O(r−4) and the
following formula for h(t) (see for example [27, 7]) :

h(t) =
∂r ln

√
det(σab)−∇agra√

grr − σabgragrb

where gra is viewed as a 1-form on Σr and ∇ is the covariant derivative with respect to the
induced metric on Σr.

From the Einstein equation (7.18), we derive

∂tgab = −2
√

r2 + 1kab.
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As a result,

∂t|H| =∂th(t) +O(r−4)

=− 2r3krr − rσabkab + r2σab∂rkab − 2r2∇akar +O(r−4).

From the vacuum constraint equation, (7.17) we derive

gij∇̄ikjr = ∂r(trgk). (7.19)

The left hand side of (7.19) is

gij∇̄ikjr =grr∇̄rkrr + gab∇̄akbr +O(r−6)

=r2∂rkrr + 4rkrr +∇akar −
1

r
σabkab +O(r−6)

On the other hand, the right hand side of (7.19) is

∂r(trgk) = r2∂rkrr + 2rkrr + σab∂rkab − 2rσabkab +O(r−6).

As a result, (7.19) implies

∇akar = −2rkrr + σab∂rkab − rσabkab +O(r−6)

and

∂th(t) = −r2∇akar +O(r−4).

This proves the evolution equations for E and P i.
To evaluate ∂tC

i and ∂tJ
i, we start with the evolution equation of the second funda-

mental form (7.18), which implies

∂tkar = rRicar +O(r−4).

Let Å be the traceless part of second fundamental form of the surface Σr in the hypersurface
(M,g(t)). The Codazzi equation reads

∇aÅab −
1

2
∇ah = Ricar.

The evolution of Ci follows from taking the divergence of the above equation, multiplying
with r2xi, and integrating over Σr. For the evolution of J i, we take the curl of the above
equation instead. �

From the above theorem, it follows that the rest mass of asymptotically initial data
defined by the authors in [9] is invariant under the Einstein equation.

Corollary 7.11. Let (M,g, k) be an asymptotically AdS initial data set. Let (M,g(t), k(t))
be the solution to the vacuum Einstein equation with g(0) = g and k(0) = k, and with

lapse N =
√
r2 + 1 and a vanishing shift vector. Let m(t) be the rest mass of the data

(M,g(t), k(t)). Then we have

∂tm(t) = 0.
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Proof. Let ~p = (P 1, P 2, P 3), ~c = (C1, C2, C3) and ~j = (J1, J2, J3). From Theorem 6.7 of
[9], the rest mass m in terms of the total conserved quantities is

m2 =
1

2
(α+

√
β)

where

α = E2 + |~j|2 − |~p|2 − |~c|2

β = (E2 − |~j|2 − |~p|2 − |~c|2)2 − 4|~j × ~p|2 − 4|~p × ~c|2 − 4|~c×~j|2 + 8E~c · (~p ×~j).

The corollary follows from Theorem 7.9 by a direct computation. �
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[11] P. T. Chruściel, D. Maerten, and P. Tod, Rigid upper bounds for the angular momentum and centre

of mass on non-singular asymptotically anti-de Sitter space-times, J. High Energy Phys. 2006, no. 11,
084, 42 pp.
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