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CONSERVED QUANTITIES IN GENERAL RELATIVITY: FROM

THE QUASI-LOCAL LEVEL TO SPATIAL INFINITY

PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Abstract. We define quasi-local conserved quantities in general relativity by us-
ing the optimal isometric embedding in [28] to transplant Killing fields in the
Minkowski spacetime back to the 2-surface of interest in a physical spacetime. To
each optimal isometric embedding, a dual element of the Lie algebra of the Lorentz
group is assigned. Quasi-local angular momentum and quasi-local center of mass
correspond to pairing this element with rotation Killing fields and boost Killing
fields, respectively. They obey classical transformation laws under the action of
the Poincaré group. We further justify these definitions by considering their limits
as the total angular momentum and the total center of mass of an isolated system.
These expressions were derived from the Hamilton-Jacobi analysis of gravitation
action and thus satisfy conservation laws. As a result, we obtained an invariant
total angular momentum theorem in the Kerr spacetime. For a vacuum asymp-
totically flat i! nitial data set of order 1, it is shown that the limits are always
finite without any extra assumptions. We also study these total conserved quan-
tities on a family of asymptotically flat initial data sets evolving by the vacuum
Einstein evolution equation. It is shown that the total angular momentum is con-
served under the evolution. For the total center of mass, the classical dynamical
formula relating the center of mass, energy, and linear momentum is recovered, in
the nonlinear context of initial data sets evolving by the vacuum Einstein evolution
equation. The definition of quasi-local angular momentum provides an answer to
the second problem in classical general relativity on Penrose’s list [20].

1. Introduction

Despite the great success of positive mass theorem (see [1, 23, 24, 30] and the ref-
erences therein) in the theory of general relativity, there remain several outstanding
and challenging problems regarding the notion of mass. The fundamental difficulty
is that, unlike any other physical theory, there is no mass density for gravitation.
The naive formula that mass is the bulk integral of mass density is ultimately false.
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For this reason, most study is limited to the total mass of an isolated gravitating
system where it is measured as a flux 2-integral at asymptotic infinity. However, a
quasi-local description of mass is extremely useful because most physical models are
finitely extended regions. In 1982, Penrose [20] proposed a list of major unsolved
problems in general relativity, and the first was “find a suitable quasi-local defini-
tion of energy-momentum (mass)”. This is a notion that is attached to a spacelike
2-surface in spacetime. It is expected that other conserved quantities such as the
angular momentum can be described quasi-locally (this is the second problem on
Penrose’s list).

In [27, 28], the second and third named authors discovered a definition of quasilocal
mass that satisfies highly desirable properties. In particular, the quasi-local mass is
positive when the ambient spacetime satisfies the dominant energy condition, and
vanishes for 2-surfaces in the Minkowski spacetime. Suppose Σ is a spacelike 2-surface
in a general physical spacetime N . The definition depends only on the induced metric
σ on Σ and the mean curvature vector field H of Σ. The mean curvature vector field
H is a unique normal vector field along the surface that is derived from the variation
of surface area. We consider isometric embeddings of the surface into R

3,1 with the
same induced metric σ. Among these isometric embeddings, the mean curvature
vector field H picks up optimal ones, by means of a fourth order elliptic equation,
which best match the physical embedding of Σ inN . Once an optimal observer, which
corresponds to a future unit time-like Killing field T0 in the Minkowski spacetime, is
chosen, there is also a canonical gauge to identity the normal bundle of Σ in N and
the normal bundle of the image of the isometric embedding in R

3,1. In this article,
we assign quasi-local angular momentum and quasi-local center of mass to each
pair of optimal isometric embedding and observer. The idea is to restrict a Killing
field K to the image of the isometric embedding in R

3,1 and then use the canonical
gauge to transplant K back to the physical surface Σ in N . This is consistent
with the Hamilton-Jacobi method of deriving conserved quantities and the optimal
isometric embedding corresponds to the ground state of the surface. Such an optimal
isometric embedding may not be unique in general. However, it was proved in [8]
that an optimal isometric embedding is locally unique if the quasi-local mass density
(denoted as ρ later, see (2.2)) is pointwise positive.

In the rest of the article, we justify the definitions of these conserved quantities.
They transform equivariantly with respect to the action of the Lorentz group on the
image of the isometric embedding in R

3,1. They also obey the classical transformation
law when the optimal isometric embedding is shifted by a translating Killing field
(this is equivalent to a shift of the center of mass). The new qusi-local angular
momentum is consistent with the Komar angular momentum for an axially symmetric
2-surface in an axially symmetric spacetime. When the quasi-local mass is zero, all
quasi-local conserved quantities vanish. In particular, this holds true for a 2-surface
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in the Minkowski spacetime. We remark that there have been several prior attempts
to define quasi-local angular momentum, most notably Penrose’s definition [21]. We
refer to the review article of Szabados [25] and references therein.

There are few criteria for a valid definition of conserved quantities at the quasi-
local level. In order to further justify their physical meaning, we study the limit
of these conserved quantities at spatial infinity of asymptotically flat spacetime and
considered them as total angular momentum and total center of mass of the system.

There are several existing definitions of total angular momentum and total center
of mass at spatial infinity, for example the Arnowitt-Deser-Misner (ADM) angular
momentum [1] (see also Ashtekar-Hansen [2]) and the total center of mass proposed

by Huisken-Yau [16], Regge-Teitelboim [22] (Beig-ÓMurchadha [3]), Christodoulou
[9], and Schoen [14]. (See for example [15, 14] for these definitions.) Because these
definitions involve asymptotically flat Killing fields which depend on the asymptoti-
cally flat coordinates, there remain several questions concerning the finiteness, well-
definedness, and physical validity of these definitions. In particular, there are various
conditions proposed by Ashtekar-Hansen [2] , Regge-Teitelboim [22], Chrusciel [11]
etc. to guarantee the finiteness of the definition of the total angular momentum
and total center of mass at spatial infinity. The most well-studied one is perhaps
the Regge-Teitelboim condition, under which there are density theorems of Corvino-
Schoen [13], uniqueness of center of mass theorems [14], and effective constructions
of initial data sets [13, 15].

The new definition only depends on the geometric data (g, k) and the foliation of
surfaces at infinity, and does not depend on the asymptotically flat coordinate system
or the existence of asymptotically Killing field on the initial data set. Besides, the
definition gives an element in the dual space of the Lie algebra of the Lorentz group.
In particular, the same formula works for total angular momentum and total center
of mass, and the only difference is to pair this element with either a rotation Killing
field or a boost Killing field.

We prove that the total angular momentum on any spacelike hypersurface of Kerr
spacetime is an invariant. Note that the definition of the new total angular momen-
tum relies only on (gij, kij) and does not assume a priori knowledge of a rotation
Killing field on the physical initial data set. All Killing fields considered are from the
reference Minkowski spacetime through the optimal isometric embedding. In partic-
ular, this shows the total angular momentum integral on any spacelike hypersurface
of the Minkowski spacetime is zero regardless of the asymptotic behavior at infinity.

The new total angular momentum and new total center of mass vanish on a space-
like hypersurface of the Minkowski spacetime because the quasi-local mass density
for a 2-surface in Minkowski spacetime is always zero. It is not clear if this phys-
ical validity condition still holds with other definitions. For example, there exists
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asymptotically flat spacelike hypersurface of the Minkowski spacetime with non-zero
ADM total angular momentum [6]. We also proved that the new definitions of total
angular momentum and total center of mass are always finite on an asymptotically
flat initial data set of order 1.

Theorem A (Theorem 7.4) Suppose (M, g, k) is an asymptotically flat initial data
set of order 1 (see Definition 3.1) satisfying the vacuum constraint equation. The
total center of mass C i and total angular momentum Ji are always finite.

More importantly, we study how theses quantities change along the Einstein evo-
lution equation. For a moving particle, the dynamical formula in classical mechanics
p = mṙ holds where p is the linear momentum, m is the mass, and r is the cen-
ter of mass. The Einstein equation Rµν − 1

2
Rgµν = 8πTµν can be formulated as

an initial value problem on a initial data set (M, g, k) that satisfies the constraint
equation. The solution of the problem is a family (M, g(t), k(t)) that satisfies the
Einstein evolution equation, a second order hyperbolic system. Therefore, a conceiv-
able criterion for the validity of a given definition of total center of mass is to check
the validity of this formula under the Einstein evolution equation. In the case of
strongly asymptotically flat initial data on which the total linear momentum van-
ishes p(t) = 0, Christodoulou [9] gave a definition of total center of mass and proved
that it is conserved under the Einstein evolution equation. We are able to prove
this dynamical formula for the newly defined total center of mass allowing the more
general condition p(t) 6= 0:

Theorem B (Theorem 9.6) Suppose (M, g, k) is an asymptotically flat initial data
set of order 1 (see Definition 3.1) satisfying the vacuum constraint equation. Let
(M, g(t), k(t)) be the solution to the initial value problem g(0) = g and k(0) = k for
the vacuum Einstein equation with lapse function N = 1 + O(r−1) and shift vector

γ = γ(−1)

r
+ O(r−2). The total center of mass C i(t) and total angular momentum

Ji(t) of (M, g(t), k(t)) satisfy

∂tC
i(t) =

pi

e
,

∂tJi(t) =0

for i = 1, 2, 3 where (e, pi) is the ADM energy momentum of (M, g(0), k(0)).

In fact, the dynamical formula for the newly defined total center of mass and
angular momentum holds under a weaker asymptotically flat condition, assuming
the total center of mass and angular momentum is finite on the hypersurface t = 0.
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Theorem C (Theorem 10.2) Suppose (M, g, k) is a vacuum initial data set satisfying

g =δ +O(r−1)

k =O(r−2)
(1.1)

such that the total center of mass C i and total angular momentum Ji of (M, g, k) are
both finite. Let (M, g(t), k(t)) be the solution to the initial value problem g(0) = g
and k(0) = k for the vacuum Einstein equation with lapse function N = 1 +O(r−1)
and shift vector γ = γ(−1)r−1 + O(r−2). The total center of mass C i(t) and total
angular momentum Ji(t) of (M, g(t), k(t)) satisfy

∂tC
i(t) =

pi

e
,

∂tJi(t) =0

for i = 1, 2, 3 where (e, pi) is the ADM energy momentum of (M, g, k).
There are also several existing definitions of total center of mass in general rela-

tivity such as [22, 3, 16]. To the best of our knowledge, this is the first time when
such a dynamical formula can be established in the context of the Einstein equation.

A typical example corresponds to a family of boosted slices moving by the vacuum
Einstein evolution equation in the Schwarzschild spacetime. Let (y0, y1, y2, y3) be
the standard isotropic coordinates of Schwarzchild’s solution in which the spacetime
metric is of the form:

(1.2) Gαβdy
αdyβ = − 1

F 2(ρ)
(dy0)2 +

1

G2(ρ)

3∑

i=1

(dyi)2

with

F 2(ρ) =
(1 + M

2ρ
)2

(1− M
2ρ
)2
, G2(ρ) =

1

(1 + M
2ρ
)4

and ρ2 =
∑3

i=1(y
i)2.

Given constants γ > 0 and β with γ = 1/
√
1− β2. Consider a change of coordinate

systems from (y0, y1, y2, y3) to (t, x1, x2, x3) with y0 = γt + βγx3, y1 = x1, y2 = x2,
and y3 = γx3+βγt. The spacetime metric in the new coordinate system (t, x1, x2, x3)
is

(− 1

F 2(ρ)
+

1

G2(ρ)
β2)γ2dt2 + 2βγ2(− 1

F 2(ρ)
+

1

G2(ρ)
)dtdx3

+
1

G2(ρ)

(
(dx1)2 + (dx2)2

)
+ (− 1

F 2(ρ)
β2 +

1

G2(ρ)
)γ2(dx3)2

with ρ2 = (x1)2 + (x2)2 + (γx3 + βγt)2.
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The lapse function (− 1
F 2(ρ)

+ 1
G2(ρ)

β2)γ2 and shift (co)-vector βγ2(− 1
F 2(ρ)

+ 1
G2(ρ)

)dx3

satisfy the decay condition in the Theorem. It was computed in [29] that the limit
of the quasilocal energy-momentum is the 4-vector M(γ, 0, 0,−βγ). The center of
mass is thus (C1(t), C2(t), C3(t)) with ∂tC

1(t) = ∂tC
2(t) = 0 and ∂tC

3(t) = −β. The
initial values of (C1(0), C2(0), C3(0)) do not matter as they are coordinate dependent.
1

2. Definition of quasi-local conserved quantities

In this section, we describe in details the quasi-local conserved quantities we pro-
posed. Let Σ be a closed embedded spacelike 2-surface in a spacetime N . We assume
the mean curvature H of Σ is spacelike. The data used in the definition of an optimal
isometric embedding is the triple (σ, |H|, αH) where σ is the induced metric, |H| is
the norm of the mean curvature vector, and αH is the connection one-form of the
normal bundle with respect to the mean curvature vector

αH(·) = 〈∇N
(·)

J

|H| ,
H

|H|〉

where J is the reflection of H through the incoming light cone in the normal bundle.
Given an embedding X : Σ → R

3,1 and a future timelike unit Killing field T0 in R
3,1,

we consider the projected embedding X̂ into the orthogonal complement of T0, and
denote the induced metric, the second fundamental form, and the mean curvature of

the image surface Σ̂ by σ̂ab, ĥab, and Ĥ, respectively.
The quasi-local energy with respect to (X, T0) is (see §6.2 of [28])

E(Σ, X, T0) =
1

8π

∫

Σ̂

ĤdΣ̂− 1

8π

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dΣ,

where ∇ and ∆ are the gradient and Laplace operator of σ respectively, τ = −〈X, T0〉
is considered as a function on the 2-surface, |∇τ |2 = σab∇aτ∇bτ , ∆τ = ∇a∇aτ , and

(2.1) θ = sinh−1(
−∆τ

|H|
√
1 + |∇τ |2

).

In relativity, the energy of a moving particle depends on the observer, and the rest
mass is the minimal energy seen among all observers. In order to define quasi-local
mass, we minimize quasi-local energy E(Σ, X, T0) among all admissible pairs (X, T0)
which are considered to be quasi-local observers. A critical point corresponds to an
optimal isometric embedding which is defined as follows:

1After this paper was completed and posted on the arXiv on December 3, 2013, we received a
paper by Nerz [18] in which the change of the Huisken-Yau definition of center of mass was studied.
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Definition 2.1. (see [28])
Given a closed embedded spacelike 2-surface Σ in N with (σ, |H|, αH), an optimal

isometric embedding is an embedding X : Σ → R
3,1 such that the induced metric of

the image surface in R
3,1 is σ, and there exists a T0 such that τ = −〈X, T0〉 satisfies

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = 0

where ∇a∇b is the Hessian operator with respect to σ and θ is given by (2.1).

Denoting the norm of the mean curvature vector and the connection one-form in
mean curvature gauge of the image surface ofX in R

3,1 by |H0| and αH0 , respectively,
we have the following equations relating the geometry of the image of the isometric

embedding X and the image surface Σ̂ of X̂ :
√

1 + |∇τ |2Ĥ =
√

1 + |∇τ |2 cosh θ0|H0| − ∇τ · ∇θ0 − αH0(∇τ)

and

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ0|H0| − ∇θ0 − αH0) = 0.

We can then substitute these relations into the expression for E(Σ, X, T0) and the
optimal isometric embedding equation and rewrite them in term of

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2
−
√

|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

.(2.2)

The quasi-local energy in terms of ρ is
(2.3)

E(Σ, X, T0) =
1

8π

∫

Σ

[
ρ(1 + |∇τ |2) + ∆τ sinh−1(

ρ∆τ

|H0||H|)− αH0(∇τ) + αH(∇τ)

]
dΣ

and the optimal isometric embedding equation in terms of ρ is

(2.4) divσ

(
ρ∇τ −∇[sinh−1(

ρ∆τ

|H0||H|)]− αH0 + αH

)
= 0.

We note that ρ = −f in equation (4.5) of [7].
We check that for a spacelike 2-surface Σ in R

3,1 with the induced metric and
mean curvature vector in R

3,1, the embedding is an optimal isometric embedding
with respect to the data. Such an optimal isometric embedding may not be unique
in general. However, there are several important cases [17, 8] in which a solution
of the equation is locally or globally energy minimizing and thus locally unique. In
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particular, it was proved in [8] that if ρ is pointwise positive, the corresponding
optimal isometric embedding is locally energy-minimizing and thus locally unique.

T0 is considered the direction of the quasi-local energy-momentum 4-vector. How-
ever, note that being an optimal isometric embedding is invariant under the SO(3, 1)
action, i.e. if (X, T0) is an optimal isometric embedding, so is (AX,AT0) for any A
in SO(3, 1).

We shall define quasi-local conserved quantities with respect to an optimal isomet-
ric embedding. Let (X0, X1, X2, X3) be the standard coordinate system of R3,1. We
recall that K is a rotation Killing field if K is the image of X i ∂

∂Xj − Xj ∂
∂Xi , i < j

under a Lorentz transformation. K is a boost Killing field if K is the image of
X i ∂

∂X0 +X0 ∂
∂Xi , i = 1, 2, 3 under a Lorentz transformation.

Definition 2.2. The quasi-local conserved quantity of Σ with respect to an optimal
isometric embedding (X, T0) and a Killing field K is

E(Σ, X, T0, K)

=
(−1)

8π

∫

Σ

[
〈K, T0〉ρ+K⊤ ·

(
ρ∇τ −∇[sinh(−1)(

ρ∆τ

|H0||H|)]− αH0 + αH

)]
dΣ.

(2.5)

Suppose T0 = A( ∂
∂X0 ) for a Lorentz transformation A, then the quasi-local conserved

quantities corresponding to A(X i ∂
∂Xj − Xj ∂

∂Xi ), i < j are called the quasi-local an-
gular momentum integral with respect to T0 and the quasi-local conserved quantities
corresponding to A(X i ∂

∂X0 + X0 ∂
∂Xi ), i = 1, 2, 3 are called the quasi-local center of

mass integral with respect to T0.

In particular, when K = T0, formula (2.3) for E(Σ, X, T0) is recovered. It is
straightforward to see that the quasi-local energy of an optimal isometric embedding
(X, T0) is

(2.6)
1

8π

∫

Σ

ρ.

Definition 2.3. Let (X, T0) be an optimal isometric embedding. Then the function
ρ defined in (2.2) is called the quasi-local mass density of (X, T0) and the integral
(2.6) is the quasi-local mass of (X, T0).

This is analogous to the rest mass in special relativity which is obtained by mini-
mizing energy seen by all observers.

3. Definition of total conserved quantities at spatial infinity

Consider an initial data set (M, g, k) where M is a 3-manifold, g is an Riemannian
metric on M and k is a symmetric two-tensor on M .
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Definition 3.1. (M, g, k) is asymptotically flat of order one if there is a compact
subset C of M such that M\C is diffeomorphic to R

3\B. The diffeomorphism induces
a “Cartesian” coordinate system {xi}i=1,2,3 on M\C and, in terms of this coordinate
system, we have the following decay condition for g and k.

gij = δij +
g
(−1)
ij

r
+

g
(−2)
ij

r2
+ o(r−2)

kij =
k
(−2)
ij

r2
+

k
(−3)
ij

r3
+ o(r−3)

(3.1)

where r =
√∑3

i=1(x
i)2.

There is also a spherical coordinate system {r, θ = u1, φ = u2} system on M\C
defined by 




x1 = r sin θ sin φ

x2 = r sin θ cosφ

x3 = r cos θ

.

On each level set of r, Σr, we can use {ua}a=1,2 as coordinate system to express
the geometric data we need in order to define quasi-local conserved quantities:

σab = r2σ̃ab + rσ
(1)
ab + σ

(0)
ab + o(1)

|H| = 2

r
+

h(−2)

r2
+

h(−3)

r3
+ o(r−3)

αH =
α
(−1)
H

r
+

α
(−2)
H

r2
+ o(r−2)

where σ̃ab is the standard metric on a unit round sphere S2. σ
(1)
ab and σ

(0)
ab are

considered as symmetric 2-tensors on S2, h(−2) and h(−3) are functions on S2 and

α
(−1)
H and α

(−2)
H are 1-forms on S2. We shall see that all total conserved quantities

on (M, g, k) can be determined by these data on S2.
Using the result of [7], there is a unique family of isometric embedding Xr and ob-

server T0(r) which minimizes the quasi-local energy locally. The embedding X(r) =
(X0(r), X i(r)) has the following expansion

X0(r) = (X0)(0) +
(X0)(−1)

r
+ o(r−1)

X i(r) = rX̃ i + (X i)(0) +
(X i)(−1)

r
+ o(r−1)

T0(r) = (a0, ai) +
T

(−1)
0

r
+ o(r−1).
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In particular, the image of the isometric embedding Xr approaches the standard
round sphere of radius r in R

3. We note that the gauge choice of the optimal
isometric embedding (X, T0) is fixed by this choice.

The dependence goes as follows, X
(0)
i depends on σ

(1)
ab , h

(−2)
0 depends on X

(0)
i , and

τ (0) depends on (a0, ai), h(−2), h
(−2)
0 , and α

(−1)
H , etc. As a result, the data on the

image of Xr also satisfy

|H0| =
2

r
+

h
(−2)
0

r2
+

h
(−3)
0

r3
+ o(r−3)

αH0 =
α
(−1)
H0

r
+

α
(−2)
H0

r2
+ o(r−2).

We recall from [29] and [7],

m =
1

8π

∫

S2

ρ(−2)dS2 =
1

8πa0

∫

S2

(h
(−2)
0 − h(−2))dS2

is the ADM mass,

(3.2)
1

8π

∫

S2

(h
(−2)
0 − h(−2))dS2 = ma0 = e

is the ADM energy and

(3.3)
1

8π

∫

S2

X̃ id̃iv(α
(−1)
H )dS2 = mai = pi

is the ADM linear momentum.

Definition 3.2. Suppose T0(r) = A(r)( ∂
∂X0 ) for a family of Lorentz transformation

A(r). Define

(3.4) C i =
1

m
lim
r→∞

E(Σr, Xr, T0(r), A(r)(X
i ∂

∂X0
+X0 ∂

∂X i
))

to be the total center of mass and

(3.5) Ji = lim
r→∞

ǫijkE(Σr, Xr, T0(r), A(r)(X
j ∂

∂Xk
−Xk ∂

∂Xj
))

to be the total angular momentum, where Σr are the coordinate spheres and (Xr, T0(r))
is the unique family of optimal isometric embeddings of Σr such that Xr converges
to a round sphere of radius r in R

3 when r → ∞.
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4. Change of quasi-local center of mass and angular momentum

with respect to reference frame.

In special relativity, one can associate energy-momentum 4-vector and conserved
quantities for a particle moving along a geodesics. Let (X0, X1, X2, X3) denote the
standard coordinate system on R

3,1 such that the Minkowski metric is of the form
ηαβ = −(dX0)2 +

∑
i(dX

i)2. Suppose the particle moves along the geodesics X(s).

Denote ∂sX(s) by Ẋ(s).
For a Killing vector field K in R

3,1, the conserved quantity associates to the
geodesics X(s) and the Killing vector field K is

ẊαηαβK
β .

The energy-momentum 4-vector of the particle is obtained using the Killing vector
field K = ∂

∂Xα . For such K, the associate conserved quantity is Ẋα. The energy of
the particle measured by an observers T0 can be considered as a function eX on the
set of future-directed unit timelike vectors, H3 in R

3,1. Moreover, eX is the restriction
of a linear function on R

3,1 to H
3. The energy-momentum 4-vector Ẋ is the dual of

this linear function eX . For a family of observer T0(t) in H
3 with T0(0) =

∂
∂X0 ,

(4.1) ∂teX(T0(t))|t=0 = aiẊi

where

∂tT0|t=0 = −ai
∂

∂X i
.

Furthermore, if we compute the conserved quantity for the Killing vector field K =
K β

α Xα ∂
∂Xβ where Kαβ is skew-symmetric, then the conserved quantity become

ẊαgαβK
β = ẊαKαβX

β.

Moreover, if we translate the geodesics by a constant vector b = (bα), we obtain
a new geodesics (X ′)α = Xα + bα. The difference of the conserved quantities along
the two geodesics X and X ′ is

(4.2) ẊαKαβb
β

In this section, we prove equation (4.1) and (4.2) for quasi-local energy-momentum,
center of mass and angular momentum.

4.1. Definition of quasi-local conserved quantities with respect to a general

isometric embedding. Quasi-local conserved quantities can be defined for (X, T0)
that is not necessarily optimal and they also transform well under the Lorentz group
action on R

3,1. Let K = K β
α Xα ∂

∂Xβ denote a Killing field, the corresponding con-
served quantity is
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(−1)

8π
Kαγ

∫

Σ

Xα (ρT γ
0 + (∇aX

γ)ja) dΣ

where Xα = Xα(ua) are components of the optimal isometric embedding, Kαγ =
K β

α ηβγ , and

(4.3) ja = σac

(
ρ∂cτ − ∂c[sinh

−1(
ρ∆τ

|H0||H|)]− (αH0)c + (αH)c

)
.

Note that Kαγ = −Kγα is skew-symmetric.
We interpret

pγ =
1

8π

∫

Σ

(ρT γ
0 + (∇aX

γ)ja) dΣ, γ = 0, 1, 2, 3

as the energy-momentum 4-vector and thus

e =
1

8π

∫

Σ

(
ρT 0

0 + (∇aX
0)ja

)
dΣ

is the energy and

pi =
1

8π

∫

Σ

(
ρT i

0 + (∇aX
i)ja
)
dΣ, i = 1, 2, 3

corresponds to the linear momentum.
Therefore, we can write the quasi-local conserved quantity as an element Φαγ in

the dual space of Kαγ:

Φαγ =
−1

16π

∫

Σ

[(XαT γ
0 −XγT α

0 )ρ+ [Xα(∇aX
γ)−Xγ(∇aX

α)]ja] dΣ

where Φαγ = −Φγα.

4.2. Change of quasi-local center of mass and angular momentum with

respect to reference frame. First we compute the change of quasi-local center of
mass and angular momentum with respect to reference frame. This is analogous to
equation (4.2).

Theorem 4.1. Suppose X is an isometric embedding of the surface Σ into R
3,1. Let

b be a vector in R
3,1 and consider the isometric embedding X ′ = X + b. Let pγ be

the quasi-local energy-momentum 4-vector with respect to the isometric embedding X
and Φαγ and Φ′αγ be the quasi-local conserved quantities with respect to X and X ′.
Then we have

Φ′αγ = Φαγ − bαpγ

2
+

bγpα

2
.
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Proof. As |H0|, αH0 are all invariant under the Lorentzian group action on the image
of the isometric embedding X : Σ → R

3,1, ρ and ja are invariantly defined. From
the expression, Φαγ is equivariant with respect to the SO(3, 1) action on X and T0.
Suppose the isometric embedding X is shifted by (X ′)α = Xα + bα for a constant
4-vector bα. The new Φ′αγ is given by

Φ′αγ − Φαγ =
−1

16π

∫

Σ

[(bαT γ
0 − bγT α

0 )ρ+ (bα∇aX
γ − bγ∇aX

α)ja] dΣ

=
1

2
(−bαpγ + bγpα).

�

Next, we relate the quasi-local linear momentum pi to the variation of quasi-local
energy. This is analogous to equation (4.1).

Theorem 4.2. Consider the function

f(s) = E(Σ, X,
√
1 + s2

∂

∂X0
+ s

∂

∂X i
,
√
1 + s2

∂

∂X0
+ s

∂

∂X i
)

That is, f(s) is the quasi-local energy with respect to the embedding X and the ob-
server

√
1 + s2 ∂

∂X0 + s ∂
∂Xi . Then

f ′(0) = E(Σ, X,
∂

∂X0
,

∂

∂X i
)

Proof. Recall that the expression of E is given in equation (2.5). Hence, we have

E(Σ, X,
∂

∂X0
,

∂

∂X i
) =

1

8π

∫

Σ

(
∂

∂X i
)⊤ ·
(
ρ∇τ −∇[sinh−1(

ρ∆τ

|H0||H|)]− αH0 + αH

)
dΣ.

Moreover, we have

(
∂

∂X i
)⊤ = ∇X i.

As a result,

E(Σ, X,
∂

∂X0
,

∂

∂X i
) =

1

8π

∫

Σ

∇aX
ijadΣ

=
1

8π

∫

Σ

(−X i)∇aj
adΣ.

On the other hand, f(s) corresponds to the quasi-local energy with respect to the
same embedding X with the observer T (s) =

√
1 + s2 ∂

∂X0 + s ∂
∂Xi . Let τ(s) be the

time function with respect to embedding X and the observer T (s). We have

τ(s) =
√
1 + s2τ(0)− sX i.
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In particular,

∂sτ(s)|s=0 = −X i.

Moreover, we have

−(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = ∇aj

a

and thus, by the first variation formula of quasi-local energy in [28], it follows that

f ′(0) =
1

8π

∫

Σ

(−X i)∇aj
adΣ.

�

From Theorem 4.2, we have

Corollary 4.3. Given a surface Σ in N , suppose (X, T0) is a solution of the optimal
embedding equation, then the quasi-local linear momentum pi vanishes.

Combining Theorem 4.1 and the above corollary, we have

Corollary 4.4. Given a surface Σ in N , suppose the pair (X, T0) is a solution of the
optimal embedding equation, then for any constant vector b, the angular momentum
with respect to the embedding X is the same as that of X ′ = X + b.

5. Quasi-local conservation law

An important ingredient of our proof of the invariance of total angular momentum
is a conservation law of the quasi-local conserved quantity. In view of the definition
of ρ, the quasi-local conserved quantity can be written as the difference of a reference
term and a physical term.

E(Σ, X, T0, K)

=
(−1)

8π

∫

Σ

{〈K, T0〉
(cosh θ0|H0| − cosh θ|H|)√

1 + |∇τ |2

+K⊤ · [∇τ(cosh θ0|H0| − cosh θ|H|)√
1 + |∇τ |2

−∇(θ0 − θ)− αH0 + αH ]}dΣ.

(5.1)

Given (X, T0), denote the image of X in R
3,1 by Σ. We recall that Σ̂ is the 2-

surface that is the projection of the image of the isometric embedding X onto the
orthogonal complement of T0. Let C be the timelike cylinder that is generated by T0



CONSERVED QUANTITIES 15

along Σ̂. Both Σ and Σ̂ are contained in C. The reference term is an integral on the
image of the isometric embedding that can be rewritten as (up to a scalar multiple)

∫

Σ

{〈K, T0〉
(cosh θ0|H0|)√

1 + |∇τ |2
+K⊤ · [∇τ(cosh θ0|H0|)√

1 + |∇τ |2
−∇θ0 − αH0 ]}dΣ

=

∫

Σ

[〈K, ĕ4〉(cosh θ0|H0|)−K⊤ · (∇θ0 + αH0)]dΣ

where ĕ4 =
1√

1+|∇τ |2
(T0 +∇τ).

If K is tangential to C, this can be further simplified as
∫

Σ

π(K, ĕ4)dΣ

where π is the conjugate momentum of the timelike cylinder C with respect to ĕ3,
the unit outward spacelike unit normal of C. Note that ĕ4 is the timelike unit normal
of Σ in C, and ĕ3 and ĕ4 are orthogonal along Σ.

Since π satisfies the vacuum constraint equation and K is a Killing field, π(K, ·) is
a divergence free on C and thus by applying the divergence theorem to Ω, the portion

of C bounded by Σ and Σ̂, we obtain
∫

Σ

π(K,N)dΣ =

∫

Σ̂

π(K, N̂)dΣ̂

where N and N̂ are the future timelike unit normal of Σ and Σ̂, respectively as
boundary components of Ω.

As N̂ = T0 on Σ̂, this is equal to
∫

Σ̂

π(K, ĕ4)dΣ̂ =

∫

Σ̂

k̂〈K, T0〉dΣ̂.

We can also apply this to the physical term
∫

Σ

{〈K, T0〉
(cosh θ|H|)√
1 + |∇τ |2

+K⊤ · [∇τ(cosh θ|H|)√
1 + |∇τ |2

−∇θ − αH ]}dΣ

and relate this to another surface term on a time slice in the physical spacetime.
There will be error terms in applying this formula, but they often can be controlled
under various conditions.

We remark that this conservation law was observed by Brown-York [4, 5]. The
novelty here is that this law is applied to both the physical and reference Minkowski
spacetime.
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6. Quasi-local conserved quantities in an axially symmetric

spacetime

For a spacetime with symmetry, it is useful to construct conserved quantity using
the Killing vector field. For an axially symmetric vacuum spacetime, this procedure
gives the well-known Komar angular momentum. In this section, we show that for an
axially symmetric vacuum spacetime N , our quasi-local angular momentum agrees
with the Komar angular momentum. For completeness, we first recall the Komar
construction. Suppose η is a Killing vector field in N . Then

∇N
α ηβ +∇N

β ηα = 0,

it follows that ∇N
α ηβ is a two-form. Let Sαβ = ⋆∇N

α ηβ be its Hodge dual. In a
vacuum spacetime, one can verify that Sαβ is closed and co-closed. As a result, the
integral

−1

8π

∫

Σ

Sαβ

depends only on the homology class of Σ.
For an axially symmetric vacuum spacetime, the Komar angular momentum is

obtained by applying the above construction to the rotation Killing vector field ∂
∂φ
.

In particular, for an axially symmetric surface Σ in an axially symmetric spacetime,
the Komar angular momentum reduces to

J =
1

8π

∫

Σ

〈∇N
∂
∂φ

e3, e4〉dΣ

where {e3, e4} is any frame of the normal bundle of Σ with e3 is an outward spacelike
unit normal and e4 is a future directed timelike unit normal. This expression is
independent of the choice of frame because ∂

∂φ
is Killing.

Proposition 6.1. Let Σ be an axially symmetric surface in an axially symmetric
spacetime. Let τ be an axially symmetric function on Σ. Consider the isometric
embedding X of Σ into R

3,1 with time function τ = −〈X, T0〉. Let K be the rotation
Killing field in R

3,1 that corresponds to the symmetry on the image of the isometric
embedding X. Then

E(Σ, X, T0, K) = J.

Proof. Since the 2-surface Σ̂ in the orthogonal complement of T0 is also axially-
symmetric, K and T0 are orthogonal. Recall that the angular momentum with
respect to K is

∫

Σ

[K⊤ · (ρ∇τ −∇[sinh−1(
ρ∆τ

|H0||H|)]− αH0 + αH)]dΣ.
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By assumption, the surface and the time function are both axially symmetric, it
follows that K is tangent to the image of X and its pull back to the surface in the
physical spacetime is the restriction of the rotation Killing vector field ∂

∂φ
.

From the discussion in Section 4 and that K is a Killing vector field in R
3,1, the

reference term is
∫
Σ
π(K, ĕ4)dΣ. Moreover,

∫

Σ

π(K, ĕ4)dΣ =

∫

Σ̂

π(K, T0)dΣ̂.

However, since Σ̂ lies in a totally geodesic hyperplane, we have

π(K, T0) = 0

and it follows that the reference term is zero.
On the other hand, the physical term is simply

− 1

8π

∫

Σ

αH(
∂

∂φ
)dΣ,

since the time function τ and the angle θ are both independent of φ. As a result,

E(Σ, X, T0, K) =
1

8π

∫

Σ

αH(
∂

∂φ
)dΣ

This finishes the proof of the lemma since

J =
1

8π

∫

Σ

〈∇ ∂
∂φ
e3, e4〉dΣ

where {e3, e4} is any frame of the normal bundle of Σ with e3 is an outward spacelike
unit normal and e4 is a future directed timelike unit normal. �

7. Finiteness of total angular momentum and total center of mass

We recall how the optimal isometric embedding equation is solved for asymptoti-
cally flat initial data set of order 1 in [7]. Given (σ, |H|, αH), we look for an isometric
embedding X = (X0, X1, X2, X3) into the Minkowski spacetime and a T0 such that

(7.1)

{
〈dX, dX〉 = σ

divσ

(
ρ∇τ −∇[sinh−1( ρ∆τ

|H0||H|
)]− αH0 + αH

)
= 0.

where τ = −〈X, T0〉 and ρ is given by (2.2).
We will indeed solve the equation for each coordinate sphere Σr and expand the

solution X(r), T0(r) in power series of r. We start with X i(r) = rX̃ i + (X i)(0) +
O(r−1). As we emphasize, this choice anchor the optimal isometric embedding.

X0(r) = (X0)(0)+O(r−1) and X i(r) = rX̃ i+(X i)(0)+O(r−1), for functions (X0)(0)

and (X i)(0) of order O(1).
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It turns out by Lemma 4 in [7], (X i)(0) satisfies the linear PDE system:

(7.2) 2

3∑

i=1

dX̃ i · d(X i)(0) = σ(1).

This can be solved by writing (X i)(0) = pa∇̃aX̃
i + vX̃ i and solve for a (0, 1) tensor

pa and a function v on S2. With (X i)(0), we compute the mean curvature of the

isometric embedding H0 whose norm is given by |H0| = 2r−1 + r−2h
(−2)
0 + O(r−3),

where
h
(−2)
0 = −X̃ i∆̃(X i)(0) − σ̃abσ

(1)
ab .

The integral, by (7.2), is
∫

S2

h
(−2)
0 = −1

2

∫

S2

σ̃abσ
(1)
ab .

We then write T0(r) = (a0, a1, a2, a3) +O(r−1) and proceed to solve (a0, a1, a2, a3)

and (X0)(0). Here τ = −〈X, T0〉 = −raiX̃
i + O(1). Let αH0 be the one form

〈∇R
3,1

(·)
J0
|H0|

, H0

|H0|
〉 on the image of Xr then

(7.3) (αH0)a =
1

2
∇̃a

(
∆̃(X0)(0) + 2(X0)(0)

)
r−1 +O(r−2).

The leading r(−3) term of the optimal isometric embedding equation is the following
elliptic equation on S2

(7.4) d̃iv(ρ(−2)∇̃τ (1))− 1

4
∆̃(ρ(−2)∆̃τ (1))− 1

2
∆̃(∆̃ + 2)(X0)(0) + d̃iv(α

(−1)
H ) = 0

where

(7.5) ρ(−2) =
h
(−2)
0 − h(−2)

a0

and

τ (1) = −
3∑

i=1

aiX̃
i.

The unknowns in (7.4) are (X0)(0) and (a0, ai). For (X0)(0) to be solvable, the

integral against any element in the kernel of the operators ∆̃ + 2, or X̃k, k = 1, 2, 3
must be zero. We derive that (a0, a1, a2, a3) must satisfies

ak
∫

S2

(h
(−2)
0 − h(−2))dS2 = a0

∫

S2

X̃kd̃iv(α
(−1)
H )

Since the integral of ρ gives the quasi-local mass, the leading term m is given by



CONSERVED QUANTITIES 19

m =
1

8π

∫

S2

ρ(−2)dS2 =
1

8π

1

a0

∫

S2

(h
(−2)
0 − h(−2))dS2.

We have

1

8π

∫

S2

(h
(−2)
0 − h(−2))dS2 = ma0 = e

is the total energy and

1

8π

∫

S2

X̃ id̃iv(α
(−1)
H )dS2 = mai = pi

is the total momentum.

Proposition 7.1. The total center of mass and total angular momentum are finite
if

∫

S2

X̃ iρ(−2)dS2 = 0 and

∫

S2

X̃ i
(
ǫ̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0(7.6)

Proof. We exam the finiteness of total conserved quantities with respect to a Killing
field of the form Kαγη

γβXα ∂
∂Xβ with Kαγ +Kγα = 0.

In (2.5), ρ is of the order of r−2, while 〈K, T0〉 could be of the order of r. Thus the
top order term −

∫
Σ
〈K, T0〉ρdΣ needs to vanish in order to have a well-defined limit.

Likewise,
∫

Σ

K⊤ ·
(
−ρ∇τ +∇[sinh−1(

ρ∆τ

|H||H0|
)]− αH + αH0

)
dΣ

=

∫

Σ

〈K,
∂X

∂ua
〉σabjbdΣ

where jb =
(
−ρ∇τ +∇[sinh−1( ρ∆τ

|H||H0|
)]− αH + αH0

)
b
is of the order of r−1 and

〈K, ∂X
∂ua 〉 is of the order of r2, thus the top order term needs to vanish as well.

Therefore, the O(r) term of the conserved quantity is

(E(Σ, X, T0, K))(1) =
1

8π

∫

S2

−〈K, T0〉(1)ρ(−2) + 〈K,
∂X

∂ua
〉(2)σ̃abj

(−1)
b dS2.(7.7)

where

j
(−1)
b = −ρ(−2)∇̃bτ

(1) +
1

4
∇̃b(ρ

(−2)∆̃τ (1))− (αH)
(−1)
b +

1

2
∇̃b(∆̃ + 2)(X0)(0)(7.8)

satisfies the leading term of the optimal isometric embedding equation ∇̃bj
(−1)
b = 0.
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In terms of coordinates, the leading term is 8π times

(7.9)

∫

S2

(
−KαγX̃

α(T γ
0 )

(0)ρ(−2)
)
dS2 +

∫

S2

(
KαγX̃

α(∇̃aX̃
γ)σ̃abj

(−1)
b

)
dS2

where we take X̃0 = 0.
Plugging (T γ

0 )
(0) = aγ and expanding indexes, the first summand in (7.9) is

−
∫

S2

KαγX̃
α(T γ

0 )
(0)ρ(−2)dS2 = −

∫

S2

(
∑

i

(Ki0X̃
ia0) +

∑

i<j

Kij(X̃
iaj − X̃jai)

)
ρ(−2)dS2.

We simplify the second summand in (7.9) in the following. Using ∇̃bj
(−1)
b = 0 and

integrating by parts, the second summand can be written as

1

2

∫

S2

Kαγ [X̃
α(∇̃aX̃

γ)− X̃γ(∇̃aX̃
α)]σ̃abj

(−1)
b dS2.

We check that

∇̃a[X̃α(∇̃aX̃
γ)− X̃γ(∇̃aX̃

α)] = 0.

Therefore, we can throw away the two gradient terms in j
(−1)
b . On the other hand,

we compute

1

2
Kαγ [X̃

α(∇̃aX̃
γ)− X̃γ(∇̃aX̃

α)] =
∑

i<j

Kij [X̃
i(∇̃aX̃

j)− X̃j(∇̃aX̃
i)].

Therefore
∫

S2

(
KαγX̃

α(∇̃aX̃
γ)σ̃abj

(−1)
b

)
dS2

=

∫

S2

∑

i<j

Kij[X̃
i(∇̃aX̃

j)− X̃j(∇̃aX̃
i)]σ̃ab(−ρ(−2)∇̃bτ

(1) − (αH)
(−1)
b )dS2.

We compute

(X̃ i∇̃aX̃
j − X̃j∇̃aX̃

i)σ̃ab∇̃bX̃
k = X̃ iδjk − X̃jδik

and

X̃ i(∇̃aX̃
j)− X̃j(∇̃aX̃

i) = ǫ b
a ǫ

ij
k∇̃bX̃

k.
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As a result,
∫

S2

(
KαγX̃

α(∇̃aX̃
γ)σ̃abj

(−1)
b

)
dS2

=

∫

S2

(
∑

i<j

Kij(X̃
iaj − X̃jai)ρ(−2) −

∑

i<j

Kij[X̃
i(∇̃aX̃

j)− X̃j(∇̃aX̃
i)]σ̃ab(αH)

(−1)
b

)
dS2.

=

∫

S2

(
∑

i<j

Kij(X̃
iaj − X̃jai)ρ(−2) + ǫijkKijX̃

k ǫ̃ab∇̃b(α
(−1)
H )a

)
dS2.

The condition (7.6) implies both summands in (7.9) vanish.
�

In the rest of the section, we prove the finiteness of total conserved quantities under
the vacuum constraint equation. Recall that an initial data set (M, g, k) satisfies the
vacuum constraint equation if

R(g) + (trk)2 − |k|2 = 0

∇i
gkij − ∂jtrgk = 0

(7.10)

where R(g) is the scalar curvature of g and ∇g is the covariant derivative with respect
to g .

We first need a lemma regarding initial data sets satisfying the vacuum constraint
equation.

Lemma 7.2. Let (M, g, k) be a vacuum asymptotically flat initial data of order 1.

Consider the coordinate spheres Σr and let ĥ be the mean curvature of the coordinate
spheres in M . Assume that

ĥ =
2

r
+

ĥ(−2)

r2
+O(r−3)

then ∫

S2

X̃ iĥ(−2)dS2 = 0.

Proof. By the second variation formula of the area of the coordinate spheres, we have

(7.11) ∂rĥ = −f(Rc(ν, ν) + |A|2)−∆f

where Rc is the Ricci curvature of the induced metric on M , ν is the outward unit
normal of Σr, f is the lapse function of the coordinate spheres and A is the second



22 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

fundamental form of the coordinate spheres inM . The Gauss equation of the surfaces
Σr in M is

(7.12) K =
R(g)

2
− Rc(ν, ν) +

1

2
(ĥ2 − |A|2).

Combining equation (7.11) and (7.12), we have

(7.13) ∂rĥ = f(K − R(g)

2
− 1

2
(ĥ2 − |A|2)− |A|2)−∆f.

We have the following aymptotic expansion for K, f , ĥ:

K =
1

r2
+

K(−3)

r3
+O(r−4),

ĥ =
2

r
+

ĥ(−2)

r2
+O(r−3),

f = 1 +
f (−1)

r
.+O(r−2)

In addition, the second fundamental form satisfies

(7.14) |A|2 = ĥ2

2
+O(r−4).

and R(g) = O(r−4) by the vacuum constraint equation. Hence, from equation (7.13),
it follows that

(7.15) ∂rĥ = f(K − 3ĥ2

4
)−∆f +O(r−4)

and

ĥ(−2) = K(−3) − ∆̃f (−1) − 2f (−1).

Integration by parts, we derive
∫

S2

X̃ iĥ(−2)dS2 =

∫

S2

X̃ i(K(−3) − ∆̃f (−1) − 2f (−1))dS2 =

∫

S2

X̃ iK(−3)dS2.

To compute the Gauss curvature K of the coordinate sphere, recall that if γc
ab are

the Christoffel symbols of the induced metric, then

2K = σbd(∂aγ
a
bd − ∂dγ

a
ba + γa

afγ
f
db − γa

dfγ
f
ab).

Moreover, we have the following asymptotics for the Christoffel symbols

γc
ab = γ̃c

ab +
σ̃cd

2r
(∇̃bσ

(1)
ad + ∇̃aσ

(1)
bd − ∇̃dσ

(1)
ab ) +O(r−2),
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where γ̃c
ab are the Christoffel symbols of σ̃ab. 2K has the following expansion:

2K =
2

r2
+

1

r3

(
−σ̃abσ

(1)
ab + σ̃bd[∇̃a(γ

(−1))abd − ∇̃d(γ
(−1))aba)]

)
+O(r−4)

where

(γ(−1))cab =
1

2
σ̃cd(∇̃bσ

(1)
ad + ∇̃aσ

(1)
bd − ∇̃dσ

(1)
ab ).

As a result,

K(−3)

=− σ̃abσ
(1)
ab +

σ̃aeσ̃bd

2
(∇̃a∇̃bσ

(1)
de + ∇̃a∇̃dσ

(1)
be − ∇̃a∇̃eσ

(1)
bd − ∇̃d∇̃bσ

(1)
ae − ∇̃d∇̃aσ

(1)
be + ∇̃d∇̃eσ

(1)
ab )

=− σ̃abσ
(1)
ab + ∇̃a∇̃bσ

(1)
ab − ∆̃(σ̃abσ

(1)
ab ).

Integration by parts, we obtain
∫

S2

X̃ iK(−3)dS2 =

∫

S2

X̃ i[−σ̃abσ
(1)
ab + ∇̃a∇̃bσ

(1)
ab − ∆̃(σ̃abσ

(1)
ab )]dS

2 = 0.

�

We also need the following result regarding isometric embeddings into R
3.

Lemma 7.3. Suppose Σr is a family of surfaces with induced metric σ = r2σ̃ +
rσ(1) +O(1) and let

ĥ0 =
2

r
+

ĥ
(−2)
0

r2
+O(r−3)

be the mean curvature of the isometric embedding of Σr into R
3, then we have

∫

S2

X̃ iĥ
(−2)
0 dS2 = 0.

Proof. We derive that

ĥ
(−2)
0 = −

∑

i

X̃ i∆̃Y i − σ̃abσ
(1)
ab ,

where Y i, i = 1, 2, 3 are functions on S2 that solve the linearized isometric embedding
equation:

(7.16)

3∑

i=1

∇̃aX̃
i∇̃bY

i + ∇̃bX̃
i∇̃aY

i = σ
(1)
ab .

Hence, ∫

S2

X̃ iĥ
(−2)
0 dS2 = −

∫

S2

(X̃ iσ̃abσ
(1)
ab + X̃ i

∑

j

X̃j∆̃Y j)dS2.
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To compute this, we use the ansatz in Nirenberg’s paper [19] for solving the isometric
embedding of surface with positive Gauss curvature into R

3. Let

(7.17) ∇̃aY
j = PaX̃ + (

σ
(1)
ab

2
+ Fǫab)σ̃

bcX̃c

where ǫab is the area form. The one-form Pa and the function F are the new un-
knowns. Instead of the original isometric embedding equation, one looks at the
compatibility condition as the new set of equations.

We derive

(7.18) ∇̃d∇̃aY = (∇̃dPa)X + PaX̃d + (
∇̃dσ

(1)
ab

2
+ Fdǫab)σ̃

bcX̃c − (
σ
(1)
ad

2
+ Fǫad)X̃.

Taking the trace of equation (7.18), we have

∑

i

X̃ i∆̃Y i = ∇̃aPa −
1

2
σ̃abσ

(1)
ab .

From (9.7) and the above equation, we obtain

(7.19)

∫
X̃ ih

(−2)
0 dS2 =

−1

2

∫
X̃ iσ̃abσ

(1)
ab dS

2 −
∫

X̃ i∇̃aPadS
2.

To compute ∇̃aPa, we use the compatibility condition, ǫad∇̃d∇̃aY = 0, to obtain the
equation for Pa and F . Again, using equation (7.18), we can express the compatibility
condition into the following equations:

ǫad(∇̃dPa −
σ
(1)
ad

2
− Fǫad) = 0,

ǫad(Paσ̃cd +
1

2
∇̃dσ

(1)
ac + ∇̃dFǫac) = 0.

As shown in [19], this is an elliptic system for Pa and F . Indeed, one may express Pa

in terms of F from the second equation then replace them in the first one to obtain
an second order elliptic equation of F . We can solve Pa from the second equation in
terms of F and Tab. The equation can be written as

(7.20) ǫacPbσ̃
ab +

1

2
ǫad∇̃dσ

(1)
ac + ∇̃cF = 0.

Multiplying the equation by ǫce, we have

P e =
1

2
ǫceǫad∇̃dσ

(1)
ac + ǫce∇̃cF.
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Integration by parts and simplifying yield∫

S2

X̃ i∇̃ePedS
2 =

∫

S2

X̃i∇̃e(
1

2
ǫceǫad∇̃dσ

(1)
ac + ǫce∇̃cF )dS2

=
1

2

∫

S2

∇̃e∇̃dX̃
iǫceǫadσ(1)

ac dS
2

= −1

2

∫

S2

X̃ iσ̃deǫ
ceǫadσ(1)

ac dS
2

= −1

2

∫

S2

X̃ iσ̃abσ
(1)
ab dS

2.

Plugging this into (7.19), we obtain∫

S2

X̃ ih
(−2)
0 dS2 = 0.

�

Theorem 7.4. For a vacuum asymptotically flat initial data set of order 1 (see
Definition 3.1), the total angular momentum and total center of mass are finite.

Proof. By Proposition 7.1, it suffices to show that∫

S2

X̃ iρ(−2)dS2 = 0 and

∫

S2

X̃ i
(
ǫ̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0.

Recall that

ρ(−2) =
h
(−2)
0 − h(−2)

a0
.

By Lemma 4 of [7],

ĥ
(−2)
0 = h

(−2)
0 .

By Lemma 7.3, ∫

S2

X̃ ih
(−2)
0 dS2 =

∫

S2

X̃ iĥ
(−2)
0 dS2 = 0.

For
∫
S2 X̃

ih(−2), we have

h(−2) = ĥ(−2)

since k = O(r−2). By Lemma 7.2,∫

S2

X̃ ih(−2)dS2 =

∫

S2

X̃ iĥ(−2)dS2 = 0.

To prove
∫
S2 X̃

i
(
ǫ̃ab∇̃b(α

(−1)
H )a

)
dS2 = 0, it suffices to show that

∫

S2

X̃ i
(
ǫ̃ab∇̃b(π

(−1)
ar )

)
dS2 = 0
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since (α
(−1)
H )a and −π

(−1)
ar differs only by a gradient vector field.

By the vacuum constraint equation, ∇i
gπai = 0. In the appendix, we prove that

(7.21) ∇i
gπia =

π
(−1)
ar − ∇̃bπ

(0)
ab

r2
+O(r−3).

and thus

π(−1)
ar = ∇̃bπ

(0)
ab .

Integration by parts, we derive
∫

S2

X̃ i
(
ǫ̃ab∇̃b(π

(−1)
ar )

)
dS2 =

∫

S2

X̃ i(ǫ̃ab∇̃b∇̃cπ(0)
ac )dS

2

=

∫

S2

(∇̃b∇̃cX̃ i)ǫ̃abπ(0)
ac dS

2

=−
∫

S2

X̃ iǫ̃abπ
(0)
ab dS

2.

The last expression is zero because π
(0)
ab is symmetric. �

In the rest of this section, we prove the following lemma. The result is similar to
Theorem 7.4 but with weaker assumptions on the initial data. This lemma will be
useful in Section 10 to study evolution of center of mass and angular momentum.

Lemma 7.5. Suppose (M, g, k) is a asymptotically flat vacuum initial data satisfying

gij =δij +O(r−1)

kij =O(r−2).
(7.22)

Let Σr be the coordinate sphere and (X(r), T0(r)) be a family of isometric embeddings
and observers with the following expansion

X0(r) = O(1)

X i(r) = rX̃ i +O(1)

T0(r) = O(1).

Then
∫

Σr

X i(|H0| − |H|)dΣr =O(ln r)

∫

Σr

(X i∇aX
j −Xj∇aX

i)σabjbdΣr =O(ln r).

(7.23)
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Proof. First we write
∫

Σr

X i(|H0| − |H|)dΣr =

∫

Σr

X i(|H0| −
2

r
)dΣr −

∫

Σr

X i(|H| − 2

r
)dΣr

For
∫
Σr

X i(|H0| − 2
r
)dΣr, following the same argument used in the proof of Lemma

7.3 with σ
(1)
ab replaced by σab−r2σ̃ab

r
, it is straightforward to derive

∫

Σr

X i(|H0| −
2

r
)dΣr = O(1).

Therefore it suffices to show that

∂r

∫

Σr

X i(|H| − 2

r
)dΣr = O(r−1).

We compute

∂r

∫

Σr

(|H| − 2

r
)X idΣr

=

∫

Σr

(∂r|H|+ 2

r2
)X i +

3

r
(|H| − 2

r
)X idΣr +O(r−1)

=

∫

Σr

(∂rĥ− 4

r2
+

3ĥ

r
)X idΣr +O(r−1)

(7.24)

where ĥ is the mean curvature of Σr in M as in Lemma 7.2. Furthermore, recall
equation (7.15)

∂rĥ = f(K − 3ĥ2

4
)−∆f +O(r−4)

where f is the lapse of the coordinates spheres, K is the Gauss curvature of the
coordinate sphere. We have the expansions for K and f :

K =
1

r2
+O(r−3), f = 1 + O(r−1).

Hence, from equation (7.15), it follows that

∂rĥ

=(f − 1)(K − 3ĥ2

4
) + (K − 3ĥ2

4
)−∆(f − 1) +O(r−4)

=
−2(f − 1)

r2
−∆(f − 1) + (K − 3ĥ2

4
) +O(r−4).

(7.25)
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Combining equation (7.24) and (7.25), we have

∂r

∫

Σr

(|H| − 2

r
)X idΣr

=

∫

Σr

[−∆(f − 1)− 2(f − 1)

r2
+K − 3ĥ2

4
− 4

r2
+

3ĥ

r
]X idΣr +O(r−1)

=

∫

Σr

[−∆(f − 1)− 2(f − 1)

r2
+ (K − 1

r2
)− 3ĥ2

4
− 3

r2
+

3ĥ

r
]X idΣr +O(r−1).

Moreover,
∫

Σr

[∆(f − 1) +
2(f − 1)

r2
]X idΣr =

∫

Σr

(f − 1)(∆ +
2

r2
)X idΣr = O(r−1)

∫

Σr

[−3ĥ2

4
− 3

r2
+

3ĥ

r
]X idΣr =

∫

Σr

−3

4
(ĥ− 2

r
)2X idΣr = O(r−1).

Finally, ∫

Σr

(K − 1

r2
)X idΣr = O(r−1)

can be verified using the same argument for computing K(−3) in Lemma 7.2, with

σ
(1)
ab replaced by σab−r2σ̃ab

r
. This proves
∫

Σr

X i(|H0| − |H|)dΣr = O(ln r).

To show that ∫

Σr

(X i∇aX
j −Xj∇aX

i)σabjbdΣr = O(ln r),

we first recall

jb =

(
−ρ∇τ +∇[sinh−1(

ρ∆τ

|H||H0|
)]− αH + αH0

)

b

.

Since ∇[sinh−1( ρ∆τ

|H||H0|
)] is a gradient vector filed, we have

∫

Σr

(X i∇aX
j −Xj∇aX

i)σab∇b[sinh
−1(

ρ∆τ

|H||H0|
)]Σr = O(1).

Similarly, ∫

Σr

(X i∇aX
j −Xj∇aX

i)σab(αH0)bdΣr = O(1)
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since αH0 is a gradient vector field up to O(r−2) terms by equation (7.3). From [29],

(αH)a = −kνa +∇a

trΣk

|H| and kνa = kra +O(r−2).

As a result,
∫

Σr

(X i∇aX
j −Xj∇aX

i)σab(αH)bdΣr

=−
∫

Σr

(X i∇aX
j −Xj∇aX

i)σabkbνdΣr +O(1).

∫
Σr
(X i∇aX

j −Xj∇aX
i)σabkbνdΣr, up to O(1) difference, is the same as ADM an-

gular momentum integral. Using divergence theorem, the ADM angular momentum
can be written as an integral onM , see equation (7) of [12]. Given the asymptotically
flat assumption, it is easy to see that the integrand in equation (7) of [12] is of order
O(r−3). It follows that the ADM angular momentum integral is of order of O(ln r).

Finally, the leading term of
∫

Σr

(X i∇aX
j −Xj∇aX

i)ΣabρτbdΣr,

=−
∫

Σr

|H0| − |H|
a0

∑

k

ak(X i∇aX
j −Xj∇aX

i)Σab∇kX
kdΣr +O(1)

=−
∫

Σr

|H0| − |H|
a0

(ajX i − aiXj)dΣr +O(1)

=O(ln r).

This finishes the proof of the lemma. �

8. Invariance of angular momentum in the Kerr spacetime

In this section, we study the limit of the new quasi-local angular momentum at the
infinity of a spacelike hypersurface in the Kerr spacetime. Fix the Boyer–Lindquist
coordinate {t, r, θ, φ} for the Kerr spacetime. The metric is (see page 313 of [26])

− (1− 2mr

r2 + a2 cos2 θ
)dt2 + (

r2 + a2 cos2 θ

r2 − 2mr + a2
)dr2 + (r2 + a2 cos2 θ)dθ2

+ (r2 + a2 +
2mra2 sin2 θ

r2 + a2 cos2 θ
) sin2 θdφ2 − (

4mar sin2 θ

r2 + a2 cos2 θ
)dtdφ.

The t = 0 slice corresponds to a maximal slice. We consider a family of surface

Σ̂R for R >> 1 on this slice that is defined by r = R and denote the induced metric

on Σ̂R by gab.
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Suppose a spacelike hypersurface in the Kerr spacetime is defined by t = f(r, ua)
for r >> 1 where f = o(r). Consider the family of the 2-surfaces ΣR,f defined by
r = R and t = f(R, ua) on this hypersurface. For R large, the isometric embedding of

the induced metric on ΣR,f into R
3,1 with time function f̄R(u

a) =
√
1− 2m

R
f(R, ua)

over a fixed R
3 is an approximate solution to the optimal embedding equation which

can be perturbed to a local minimum of the quasi-local energy. Denote the image
of isometric embedding by ΣR,f̄ and its projection to the fixed R

3 by Σ̂R,f̄ . We
will compute the quasi-local angular momentum using this isometric embedding and
show that the result is independent of the defining equation f of the hypersurface.

First, we need to compare the geometry of the surface ΣR,f in the Kerr spacetime

with that of Σ̂R,f̄ in R
3,1. The tangent bundle of the ΣR,f is spanned by

∂

∂wa
=

∂

∂ua
+ ∂af

∂

∂t
.

Using the isometric embedding, we push forward the tangent vectors ∂
∂wa to ΣR,f̄ .

Denote these tangent vectors by ∂
∂wa as well. Using the isometric embedding, a

function τ on ΣR,f is also a function on ΣR,f̄ . We use ∂aτ to denote the partial

derivative of τ with respect to ∂
∂wa . Also, we fix the standard coordinate {s, ρ, va}

for Minkowski space and fix the constant vector T0 =
∂
∂s
.

Lemma 8.1. Suppose f = o(r). Let ΣR,f be the above surface in the Kerr spacetime
determined by t = f(R, ua) and r = R. Let ΣR,f̄ be image of the isometric embedding

of ΣR,f into R
3,1 with time function f̄ . Let Hf and Hf̄ be the mean curvature vectors

of the surfaces in the Kerr spacetime and R
3,1 respectively. Let {ĕ3, ĕ4} and {ē3, ē4}

be the canonical frame of the normal bundle of the surface in R
3,1 and the Kerr

spacetime determined by the isometric embedding (see §6.2 of [28]). Finally, let αĕ3

and αē3 be the corresponding connection one form of normal bundle. Then, we have

−〈Hf , ē3〉 =
(2− |∇̂f̄ |2)

√
1− 2m

R

R(1− |∇̂f̄ |2)
− m|∇̂f̄ |2

R2(1− |∇̂f̄ |2)
√

1− 2m
R

+O(R−3)

−〈Hf̄ , ĕ3〉 =
(2− |∇̂f̄ |2)
R(1− |∇̂f̄ |2)

+O(R−3)
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and

(αē3)a =
∂af̄

R
√

1− |∇̂f̄ |2
[− m

R
√

1− 2m
R

+

√
1− 2m

R
] + 〈∇Kerr

a ∂r, ∂t〉+ o(R−2)

(αĕ3)a =
∂af̄

R

√
1− |∇̂f̄ |2

+ o(R−2)

where ∇̂ denote the derivative with respect to the metric on Σ̂R.

Proof. When a = 0, the above formulas are exact without any error. We first verify
these formiulas for a = 0. For a = 0, the cylinder r = R is isometric to the cylinder

ρ = R in the Minkowski space by the identification s =
√
1− 2m

R
t and va = ua.

Hence, the canonical gauge ē4 is simply the unit normal of ΣR,f in the cylinder
r = R. It is straightforward to verify that the second fundamental of the cylinder is

− m(1− 2m
R
)

R2

√
1− 2m

R

dt2 +

√
1− 2m

R

R
σabdu

adub

and the unit normal vector ē4 is

ē4 =
1√

1− |∇̂f̄ |2
(

1√
1− 2m

R

∂

∂t
+ f̄a ∂

∂ua
).

It follows that

−〈Hf , ē3〉 =
(2− |∇̂f̄ |2)

√
1− 2m

R

R(1− |∇̂f̄ |2)
− m|∇̂f̄ |2

R2(1− |∇̂f̄ |2)
√

1− 2m
R

(αē3)a =
∂af̄

R

√
1− |∇̂f̄ |2

[− m

R
√

1− 2m
R

+

√
1− 2m

R
].

Moreover, the corresponding quantities in R
3,1 are obtained by setting m = 0.

When a is non-zero, we have the corresponding error. For example, the metric
is changed by O(1). As a result, 〈Hf̄ , ĕ3〉 is changed by O(R−3). Similarly, |Hf | is
changed by O(R−3) and the frame ē3 is changed by an angle of O(R−2). �

Corollary 8.2. For the optimal embedding equation on ΣR,f , τ = f̄ is an approxi-
mate solution with error o(R−4). In particular, if we define ja using equation (4.3)
with τ = f̄ , then

ja = O(R−2), ∇aja = o(R−4).



32 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Applying the iteration process for solving the optimal embedding equation at
spatial infinity [7], we have

Corollary 8.3. For the optimal embedding equation on ΣR,f , there exists a solution
fmin of the form

(fmin)R(u
a) = f̄R(u

a) + o(1)X̃ i + o(R−1).

In particular, define j′ as in equation (4.3) with τ = fmin, then

ja − j′a = o(R−2), ∇aj′a = 0.

Let XR and X ′
R be the isometric embedding into R

3,1 with time function f̄R and
(fmin)R. For the angular momentum, we use the Killing vector fields Lij = X i ∂

∂Xj −
Xj ∂

∂Xi . We have the following invariance of total angular momentum result:

Theorem 8.4. For any function f = o(r), we have

lim
R→∞

E(ΣR,f , X
′
R, T0, Lij) = lim

R→∞
E(Σ̂R, X0, T0, Lij).

Proof. Let L = Lij and denote f̄R and (fmin)R by f̄ and fmin. Using the projections

from ΣR,f to Σ̂R and from ΣR,f̄ to Σ̂R,f̄ , we can view functions on ΣR,f and ΣR,f̄ as

functions on Σ̂R and Σ̂R,f̄ . Furthermore, we can also push forward the tangent vectors
∂

∂wa to Σ̂R and Σ̂R,f̄ and still use ∂a to denote the partial derivative of functions.

Finally, let C1 and C2 be the cylinder over Σ̂R and Σ̂R,f̄ .
We first compute the conserved quantity for ΣR,f with respect to the isometric

embedding XR. We have

Proposition 8.5. For f = o(r), we have

lim
R→∞

E(ΣR,f , XR, T0, L) = lim
R→∞

E(Σ̂R, X0, T0, L).

Proof. The quasi-local angular momentum is the difference between the reference
term and the physical term. Denote the reference term by E1 and physical term by
E2. It is clear that

E1(Σ̂R, X0, T0, L) = 0.

It suffices to show that

lim
R→∞

E1(ΣR,f , XR, T0, L) =0(8.1)

lim
R→∞

E2(ΣR,f , XR, T0, L) = lim
R→∞

E2(Σ̂R,f , X0, T0, L).(8.2)

The induced metric on ΣR,f is

σab = gab + fagtb + fbgta + fafbgtt = gab − f̄af̄b +O(1).
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Hence, the induced metric on Σ̂R,f̄ is gab +O(1). As result, while the Killing vector
field L is not tangent to C2, we have

〈ĕ3, L〉 = O(R−1).

Let
LC2 = L− 〈ĕ3, L〉ĕ3

be the tangential component of L to C2. Furthermore, let L⊤ be the tangential
component of L to ΣR,f̄

L⊤ = L− 〈ĕ3, L〉ĕ3 + 〈ĕ4, L〉ĕ4.
Consider the vector field Z2 = π2((L)

C2 , ·) on C2 where π2 is the conjugate momen-
tum. We claim that

divZ2 = O(R−3).

The conjugate momentum is divergence free since the spacetime is vacuum. More-
over, L is Killing and thus

(LLC2g)ij = (L〈ĕ3,L〉ĕ3g)ij = O(R−2).

Also, it is clear that
π2 = O(R−1).

Hence

(8.3) divZ2 = O(R−3).

Using the divergence theorem for the vector field V , we have∫

Σ̂R,f̄

π2(L
C2 , n̂)dΣ̂R,f̄ =

∫

ΣR,f̄

π2(L
C2 , n)dΣR,f̄ −

∫

Ω2

divZ2

where Ω2 is the portion of C2 between Σ̂f̄ and Σf̄ . Hence,∫

Σ̂R,f̄

π2(L
C2 , n̂)dΣ̂R,f̄ =

∫

ΣR,f̄

π2(L
C2 , n)dΣR,f̄ + o(1).

However, Σ̂R,f̄ lies on the hypersurface s = 0 in R
3,1. As a result, we have

∫

Σ̂R,f̄

π2(L
C2 , n̂)dΣ̂R,f̄ = 0.

By definition, we have∫

ΣR,f̄

π2(L
C2 , n)dΣR,f̄ =

∫

ΣR,f̄

(〈L, ĕ4〉〈Hf̄ , ĕ3〉 − 〈∇L⊤ ĕ3, ĕ4〉)dΣR,f̄

=E1(ΣR,f , XR, T0, L).

This proves equation (8.1).
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For equation (8.2), let π1 be the conjugate momentum of C1. Identifying the
coordinate (t, r, θ, φ) in the Kerr spacetime and the spherical coordinate (s, ρ, ua) in
the Minkowski spacetime gives a diffeomorphism between exterior regions. We use
this diffeomorphism to pull back the Killing vector field L to Kerr spacetime and
denote the pull back by L′. L′ is an asymptotic Killing vector field. Consider the
vector field Z1 = π(L′, ·) on C1.

Let Ω1 be the portion of C1 bounded between ΣR,f and Σ̂R. We have
∫

ΣR,f

Z1 · n dΣR,f =

∫

Σ̂R

Z1 · n dΣ̂R +

∫

Ω1

divZ1.

However,

divZ1 =πij
1 〈∇∂iL

′, ∂j〉 = O(R−3).

Hence,

lim
R→∞

∫

ΣR,f

π1(L
′, n) dΣR,f = lim

R→∞

∫

Σ̂R

π1(L
′, n̂) dΣ̂R

where n̂ and n are the unit normal of Σ̂R and ΣR,f in C1.
For the term on the right hand side, we have

∫

Σ̂R

π1(L
′, n̂) dΣ̂R = E2(Σ̂R, X0, T0, L).

To compare the left hand side with E2(ΣR,f , XR, T0, L), recall that if L is decomposed
as

L = 〈L, ĕ3〉ĕ3 − 〈L, ĕ4〉ĕ4 + L⊤,

then

E2(ΣR,f , XR, T0, L) =

∫

ΣR,f

(〈L, ĕ4〉〈Hf , ē4〉 − 〈∇LT ē3, ē4〉) dΣR,f .

where ē3 and ē4 is the canonical frame of the normal bundle of ΣR,f determined by

〈Hf , ē4〉 = 〈Hf̄ , ĕ4〉.
On the other hand,

∫

ΣR,f

π1(L
′, n) dΣR,f =

∫

ΣR,f

(〈L′, e4〉〈Hf , e4〉 − 〈∇(L′)⊤e3, e4〉) dΣR,f

where e3 is the unit normal of C1 and e4 is the unit normal of ΣR,f in C1.
One has to compare the vector fields L to L′. We know that the frame {e3, e4}

where e3 is the unit normal of C1 and e4 is the unit normal of ΣR,f in C1 is a good
approximation of the canonical frame, {ē3, ē4} and we have

e3 = ē3 +O(R−2)
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e4 = ē4 +O(R−2).

Indeed, for a = 0, the equalities hold without any error. And a > 0 introduces an
error of order O(R−2).

We have the following lemma which compare L′ with L.

Lemma 8.6. For the above coefficient, we have

〈L′, e4〉 = 〈L, ĕ4〉+ o(R−1)(8.4)

|(L′)⊤ − L⊤| = O(R−1).(8.5)

Proof. We will only use the fact that the spacetime is asymptotically Schwarzschild.
It suffices to consider the case when L = ∂

∂v2
and L′ = ∂

∂u2 .
The tangent bundle of the ΣR in the Kerr spacetime is spanned by

∂

∂w1
=

∂

∂u1
+ ∂1f

∂

∂t
∂

∂w2
=

∂

∂u2
+ ∂2f

∂

∂t
.

Hence,

〈L′,
∂

∂wa
〉 = r2σ̃2a +O(1)

In terms of the coordinate of R3,1, ∂
∂wa can be written as

∂

∂w1
=(1 +O(R−2))

∂

∂v1
+O(R−2)

∂

∂v2
+O(1)

∂

∂ρ
+ ∂1f̄

∂

∂s

∂

∂w2
=(1 +O(R−2))

∂

∂v2
+O(R−2)

∂

∂v1
+O(1)

∂

∂ρ
+ ∂2f̄

∂

∂s
.

Hence,

〈L, ∂

∂wa
〉 = r2σ̃2a +O(1).

This proves

|(L′)⊤ − L⊤| = O(R−1).

On the other hand,

ĕ4 =
∂
∂s

− (∂af̄)σ
ab ∂

∂wb√
1− |∇̂f̄ |2

where ∇̂ is the covariant derivative of Σ̂R,f̄ . As a result,

〈L, ĕ4〉 =
−∂2f̄√

1−R−2|∇̃f̄ |2
.
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On the other hand,

e4 =
∂
∂t
+ V a ∂

∂ua√
−gtt − |V |2 − 2V agat

where

Va = −gat − fagtt.

Hence,

〈L′, e4〉 =
−∂2f√

−gtt − |V |2 − 2V agat

=
−∂2f̄√
1− |V |2

−gtt

+ o(R−1).

Since

Va = −gat − fagtt = −gat + f̄a
√
−gtt,

it is easy to see that
|V |2
−gtt

= R−2|∇̃f̄ |2 + o(R−2).

Thus

〈L′, e4〉 =
−∂2f̄√

1− R−2|∇̃f̄ |2
+ o(R−1).

〈L, ĕ4〉 − 〈L′, e4〉 = o(R−1).

�

By Lemma 8.6, we have

E2(ΣR,f , XR, T0, L)−
∫

ΣR,f

π1(L
′, n) dΣR,f

=

∫

ΣR,f

(〈L, ĕ4〉〈Hf , ē4〉 − 〈∇LT ē3, ē4〉) dΣR,f .−
∫

ΣR,f

(〈L′, e4〉〈Hf , e4〉 − 〈∇(L′)T e3, e4〉) dΣR,f

=o(1).

This finishes the proof of the proposition. �

Let (L⊤)′ be the tangential part of L to the image of X ′
R. Then

(L⊤)′a − L⊤
a = o(1)

since the time function is changed by o(1). Hence

σab[(L⊤)′aj
′
b − (L⊤)ajb] = σab[(L⊤)′a(j

′
b − jb)− ((L⊤)′a − (L⊤)a)jb] = o(R−2).
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It follows

lim
R→∞

E(ΣR,f , X
′
R, T0, L) = lim

R→∞
E(ΣR,f , XR, T0, L).

This finishes the proof of the theorem. �

9. Evolution of total angular momentum and center of mass under

the Einstein equation.

In this section, we study the evolution of the total center of mass and angular
momentum of a vacuum asymptotically flat initial data set of order 1 (see Definition
3.1) under the vacuum Einstein equation.

Assume that we have an asymptotically flat initial data (M, gij(0), kij(0)) satisfying
the vacuum constraint equation equation (7.10).

We shall fix an asymptotically flat coordinate system onM with respect to (gij(0), kij(0))
and consider a family (gij(t), kij(t)) that evolves according to the vacuum Einstein
evolution equation

∂tgij = −2Nkij + (Lγg)ij

∂tkij = −∇i∇jN +N
(
Rij + (trk)kij − 2kilk

l
j

)
+ (Lγk)ij

(9.1)

where N is the lapse function, γ is the shift vector and L is the Lie derivative.
The metric on the spacetime generated by the vacuum Einstein equation is then

−Ndt2 + 2γidtdx
i + gijdx

idxj.

Suppoe N = 1+O(r−1) and γ = O(r−1), it is easy to see that ∂tgij = O(r−2) and
∂tkij = O(r−3). As a result,

σab = r2σ̃ab + rσ
(1)
ab + σ

(0)
ab (t) + o(1)

|H| = 2

r
+

h(−2)

r2
+

h(−3)(t)

r3
+ o(r−3)

αH =
α
(−1)
H

r
+

α
(−2)
H (t)

r2
+ o(r−2)

(9.2)

The optimal isometric embedding equation of such data was solved in [7] and the
solution satisfies the following asymptotic expansion:

X0 = (X0)(0) +
(X0)(−1)(t)

r
+ o(r−1)

X i = rX̃ i + (X i)(0) +
(X i)(−1)(t)

r
+ o(r−1)

T0 = (a0, ai) +
T

(−1)
0 (t)

r
+O(r−2).

(9.3)
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where (a0, ai) points to the direction of the total energy-momentum 4-vector which
is a constant in this case.

As a result, the corresponding data on the image of isometric embedding satisfies

|H0| =
2

r
+

h
(−2)
0

r2
+

h
(−3)
0 (t)

r3
+ o(r−3)

αH0 =
α
(−1)
H0

r
+

α
(−2)
H0

(t)

r2
+ o(r−2).

(9.4)

Since vacuum constraint equation is preserved by vacuum Einstein evolution equa-
tion, by Theorem 7.4, the total center of mass and total angular momentum is well
defined for each t.

Remark 9.1. From the above discussion and equation (3.2) and (3.3), the ADM
energy momentum is conserved by the Einstein equation in this case.

We first prove the following theorem.

Theorem 9.2. Under the vacuum Einstein evolution equation (9.1) with lapse func-
tion N = 1 +O(r−1) and shift vector γ = γ(−1)r−1 +O(r−2), we have

∂t

[
1

8π

∫

Σr

X iρ dΣr

]
=

pi

a0
+O(r−1)

for i = 1, 2, 3.

Proof. By the expansion (9.2), (9.3), (9.4),

∂t

[
1

8π

∫

Σr

X iρ dΣr

]
=

1

8π

∫

Σr

X i∂tρ dΣr +O(r−1).

By the definition of ρ and the expansion (9.2), (9.3), (9.4),

∂tρ =
∂t(|H0| − |H|)

a0
−

(|H0| − |H|)
∑

j a
j∂tT

(−1)
0 (t)j

(a0)3r
+O(r−4).

As a result,

∂t

[
1

8π

∫

Σr

X iρ dΣr

]
=

1

8π

∫

Σr

X i∂t(|H0| − |H|)
a0

dΣr

−
∑

j a
j∂tT

(−1)
0 (t)j

8π(a0)3

∫

Σr

X i(|H0| − |H|)
r

dΣr +O(r−1).

By Theorem 7.4, ∫

Σr

X i(|H0| − |H|)
r

dΣr = O(r−1).
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It follows that

∂t

[
1

8π

∫

Σr

X iρ dΣr

]
=

1

8π

∫

S2

X̃ i∂t(h
(−3)
0 (t)− h(−3)(t))

a0
dS2 +O(r−1).

Let us study the two terms separately. First, we prove the following lemma

Lemma 9.3. Under the Einstein vacuum equation with lapse function N = 1 +
O(r−1) and shift vector γ = O(r−1),

∂t

[∫

S2

X̃ ih
(−3)
0 (t)dS2

]
= 0.

Proof. First, we show that

∂t(|H0|2 − ĥ2
0) = O(r−5).

where ĥ0 is the mean curvature of the image of the isometric of σab into R
3.

Let X ′ be the isometric embedding of σab into R
3. X ′ satisfies the isometric

embedding equation

(9.5) 〈dX ′, dX ′〉R3 = σ.

On the other hand, X i satisfies the isometric embedding equation

〈dX, dX〉R3 = σ − dX0 ⊗ dX0;

It follows that
(X ′)i −X i = O(r−1)

since dX0 ⊗ dX0 = O(1).
Taking the derivative of equation (9.5) with respect to t and considering its leading

order term, we derive that (Y ′)k = ∂t((X
′)k)(−1), k = 1, 2, 3 are functions on S2 that

solve the linearized isometric embedding equation

∇̃aX̃
k∇̃b(Y

′)k + ∇̃bX̃
k∇̃a(Y

′)k = ∂tσ
(0)
ab

Similarly, Y k = ∂t(X
k)(−1), k = 1, 2, 3 are functions on S2 that solve the linearized

isometric embedding equation

∇̃aX̃
k∇̃b(Y )k + ∇̃bX̃

k∇̃a(Y )k = ∂tσ
(0)
ab − ∇̃aX

(0)∇̃b(∂tX
(0))− ∇̃bX

(0)∇̃a(∂tX
(0)).

However, since ∂tX
(0) = 0, we have Y = Y ′ and

∂t[(X
′)i −X i] = O(r−2).

For any function f on Σr,

(∂t∆)f =∂t[σ
ab(∂a∂b − Γc

ab∂c)]f

=(∂tσ
ab)(∂a∂b − Γc

ab∂c)f − σab(∂tΓ
c
ab)∂cf

=O(r−4f)
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As a result,

∂t(|H0|2 − ĥ2
0)

=∂t[∆(X i − (X ′)i)∆(X i + (X ′)i)]− 2∆X0∂t(∆X0)

=O(r−5).

The mean curvature of the image surface satisfies

ĥ2
0 =

∑

k

(∆(X ′)k)2.

Hence,

ĥ0∂tĥ0 =
∑

k

∆(X ′)k(∂t∆)(X ′)k +∆(X ′)k∆(∂t(X
′)k).(9.6)

The left hand side of (9.6) is

2∂tĥ
(−3)
0

r4
+O(r−5).

Denote Tab = ∂tσ
(0)
ab . We compute

(∂t∆)(X ′)k =∂t[σ
ab(∂a∂b − Γc

ab∂c)](X
′)k

=(∂tσ
ab)(∂a∂b − Γc

ab∂c)(X
′)k − σab(∂tΓ

c
ab)∂c(X

′)k

=
σ̃abTabX

k − σ̃ab(∂tΓ
c
ab

(−2))∂cX̃
k

r3
+ o(r−3)

and ∆(X ′)k = −2X̃k

r
+ O(r−2). Therefore, the first term on the right hand side of

(9.6) is,
∑

k

∆(X ′)k(∂t∆)(X ′)k =
−2σ̃abTab

r4
+O(r−5).

The second term on the right hand side of (9.6) can be expanded as

∑

k

∆(X ′)k∆(∂t(X
′)k) =

∑
k −2(̃X ′)k∆̃(Y ′)k

r4
+O(r−5)

where (Y ′)k, k = 1, 2, 3 are functions on S2 that solve the linearized isometric em-
bedding equation

∑

k

∇̃aX̃
k∇̃b(Y

′)k + ∇̃bX̃
k∇̃a(Y

′)k = Tab.

Thus, from (9.6), we deduce that

(9.7) ∂tĥ
(−3)
0 = −σ̃abTab − X̃k∆̃(Y ′)k
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Following the proof of Proposition 7.3 with σ
(1)
ab replaced by Tab, we have

∫

S2

X̃ iX̃k∆̃(Y ′)kdS2 =

∫

S2

X̃ iσabTabdS
2.

This finishes the proof of the lemma. �

For the physical term
∫
X̃ i∂th

(−3), we prove the following lemma,

Lemma 9.4. Under the vacuum Einstein evolution equation (9.1) with lapse function

N = 1 +O(r−1) and shift vector γ = γ(−1)

r
+O(r−2),

1

8π

∫

S2

X̃ i∂th
(−3)dS2 = −pi.

Proof. Since

∂tkij = −∇i∇jN +N(Rij + trkkij − 2kilk
l
j) + (Lγk)ij = O(r−3)

and trΣr
k is of lower order, in studying ∂t|H|, it suffices to look at the time derivative

of mean curvature ĥ of Σr with respect to the 3-metric gij(t).
In spherical coordinate {r, ua}, the metric is of the form

g = grrdr
2 + 2gradrdu

a + gabdu
adub

where grr = 1 + O(r−1), gra = O(1) and gab = σab is the induced metric on Σr.
Denote βa = gra. The unit normal vector of the surface Σr is

n =
∂
∂r

− βa ∂
∂ua√

grr − |β|2
.

The mean curvature of the surface Σr with respect to the 3-metric gij(t) is

ĥ =
∂r ln

√
det(σab)−∇aβa√
grr − |β|2

.

As a result,

∂tĥ =∂t

[
∂r ln

√
det(σab)−∇aβa√
grr − |β|2

]

=
∂t∂r ln

√
det(σab)− ∂t∇aβa√
grr − |β|2

+ ∂t
1√

grr − |β|2
[∂r ln

√
det(σab)−∇aβa].

(9.8)

Let
Sij = (Lγg)ij

be the deformation tensor for the shift vector γ, then

∂tgij = −2Nkij + Sij



42 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

and

(9.9) ∂tĥ = −∂rtrΣr
k + 2(∇akra +

krr
r
)− (

trΣr
S

r
+∇aSra +

Srr

r
) +O(r−4).

We claim that

∫

Σr

X i[−∂rtrΣr
k + 2(∇akra +

krr
r
)]dΣr = −pi +O(r−1)(9.10)

∫

Σr

X i(
trΣr

S

r
+∇aSra +

Srr

r
)dΣr = O(r−1).(9.11)

To prove equation (9.10), we first relate the last term on the left hand side to the
other two terms using the vacuum constraint equation.

Let π(t) be the conjugate momentum of (M, gij(t), kij(t)). That is,

(9.12) π = k − (trgk)g.

The vacuum constraint equation states that π is divergence free. Namely,

∇i
gπij = 0.

In particular, we will use leading term (of O(r−3)) of the equation

∇i
gπir = 0

in spherical coordinates. In the appendix, it is proved that

(9.13) ∇i
gπir = ∂rπrr +∇aπar +

2πrr

r
− gabπab

r
+O(r−4).

By equation (9.12) and the vacuum constraint equation, we have

−∂rtrΣr
k − trΣr

k

r
+∇akar +

2krr
r

= O(r−4)

As a result,

−∂rtrΣr
k + 2(∇akra +

krr
r
) = ∇akar +

trΣr
k

r
+O(r−4)

We derive that

(9.14)

∫

Σr

X i[−∂rtrΣr
k+2(∇akra+

krr
r
)]dΣr =

∫

Σr

X i(
trΣr

k

r
+∇akra)dΣr+O(r−1).

It is proved in [29] that the ADM linear momentum of an asymptotically flat
manifold can be computed as limit of quasi-local energy as

1

8π
lim
r→∞

∫

Σr

X idivΣ(αH)adΣr.
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Moreover, from the same paper,

(αH)a = −kνa +∇a

trΣr
k

|H| and kνa = kra +O(r−2).

Hence, the linear momentum is

lim
r→∞

∫

Σr

X i∇a(αH)adΣr = lim
r→∞

∫

Σr

X i∇a(−kνa +∇a

trΣr
k

|H| )dΣr

= lim
r→∞

∫

Σr

X i∇a(−kra +∇a

trΣr
k

|H| )dΣr

= lim
r→∞

∫

Σr

(
−X i∇akra +X i∆

trΣr
k

|H|

)
dΣr

= lim
r→∞

∫

Σr

(
−X i∇akra −X i2trΣr

k

|H|r2
)
dΣr

= lim
r→∞

∫

Σr

(
−X i(∇akra +

trΣr
k

r
)

)
dΣr

This proves equation (9.10). To prove equation (9.11), we first observe that

Sij = ∇0
i γj +∇0

jγi +O(r−3)

where ∇0 is the covariant derivative with respect to the flat metric.
In spherical coordinates, we write γ as

γ = γrdr + γadu
a

with γr = O(r−1) and γa = O(1). In spherical coordinates, S is given by

Srr = 2∇0
rγr +O(r−3) = 2∂rγr +O(r−3)

Sra = ∇0
aγr +∇0

rγa +O(r−2) = ∂aγr − 2
γa
r

+O(r−2)

Sab = ∇0
aγb +∇0

bγa +O(r−1) = ∇Σr
a γb +∇Σr

b γa + 2rσ̃abγr +O(r−1).

Hence,

trΣS

r
+∇aSra +

Srr

r

=
2divΣr

γb + 4γr
r

r
+∆γr −

2divΣr
γb

r
+

2∂rγr
r

+O(r−4)

As a result, if γr = γ
(−1)
r r−1 +O(r−2) then we have

trΣr
S

r
+∇aSra +

Srr

r
=

(∆̃ + 2)γ
(−1)
r

r−3
+O(r−4)
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Integration by parts, we derive∫

Σr

2X i(
trΣr

S

r
+∇aSra +

Srr

r
)dΣr =

∫

S2

X̃ i(∆̃ + 2)γ(−1)
r dS2 +O(r−1) = O(r−1).

�

Theorem 9.2 follows from Lemma 9.3 and Lemma 9.4. �

Lemma 9.5.

∂t[

∫

Σr

[X i∇aX
j −Xj∇aX

i]σabjb dΣr] = O(r−1).

Proof. It is easy to see that jb is of the order O(r−1) and ∂tjb is of order O(r−2).
Moreover,

X i∇aX
j −Xj∇aX

i =r2(X̃ i∇̃aX̃
j − X̃j∇̃aX̃

i) +O(r)

∂t(X
i∇aX

j −Xj∇aX
i) =O(1).

(9.15)

Using the above expansion, we derive

∂t[

∫

Σr

[X i∇aX
j−Xj∇aX

i]σabjb dΣr] =

∫

S2

[X̃ i∇̃aX̃
j−X̃j∇̃aX̃

i]σ̃ab∂tj
(−2)
b dS2+O(r−1).

Let’s look at the four terms in jb = −ρ∇bτ +∇b[sinh
−1( ρ∆τ

|H||H0|
)]− (αH)b + (αH0)b

individually. Among the four terms, ∇b[sinh
−1( f∆τ

|H||H0|
)] is a closed one-form . As a

result, its integration against X̃ i∇̃aX̃
j − X̃j∇̃aX̃

i vanish. Moreover, while (αH0) is
not closed, by the expansion of (αH0)b in Lemma 5 of [7] and the expansion of data
in equation (9.3) and (9.4),

∂t(αH0)b =
1

2r2
∇̃b[(∆̃ + 2)∂t(X

0)(−1)] +O(r−3).

Thus, (αH0)b has no contribution either.
For the first term, we derive

∂t(ρ∇bτ) = −r−2
∑

k

[ak(∂tρ
(−3))∇̃bX̃

k + ρ(−2)∇̃b∂t(T
(−2)
0 )kX̃k] +O(r−3)

and ∫

S2

[X̃ i∇̃aX̃
j − X̃j∇̃aX̃

i]σ̃ab
∑

k

[ak(∂tρ
(−3))∇̃bX̃

k − ρ(−2)∇̃b∂t(T
(−2)
0 )kX̃k]dS2

=

∫

S2

(X̃jai − X̃ iaj)(∂tρ
(−3))dS2 +

∫

S2

[X̃j∂t(T
(−2)
0 )i − X̃ i∂t(T

(−2)
0 )j ]ρ(−2)dS2

By Theorem 7.4, we have ∫

S2

X̃ iρ(−2)dS2 = 0
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By Theorem 9.2, we have

[
1

8π

∫

S2

X̃ i∂tρ
(−3) dS2] =

pi

a0
.

It follows that (ρ∇bτ) has no contribution either.
Finally,

∂t

∫

Σr

(X i∇aX
j −Xj∇aX

i)σab(αH)bdΣr

=− ∂t

∫

Σr

(X i∇aX
j −Xj∇aX

i)σabkνbdΣr +O(r−1)

since (αH)b and −kνb differ by a gradient vector filed.
Consider the timelike cylinder C defined by r = c in the solution of the Einstein

equation. Let γ be the induced metric on C and π be the conjugate momentum of
C. The cylinder C is foliated by the level set of t. On each level set of t, we have the
tangential vector field X i∇aX

j −Xj∇aX
i. This gives a vector field K ′ on C.

We will use the divergence theorem to prove the conservation we need. Let us
consider the vector field Z = π(K ′, ·) on C. Let Ωc be the portion of C bounded
between t = 0 and t = c. Denote the surface C ∩ {t = t0} by Σt0 . By the divergence
theorem, we have

∫

Σc

Z · ndΣc =

∫

Σ0

Z · ndΣ0 +

∫

Ωc

divγZ.

However,
∫

Σc

Z · n =

∫

t=c

π(K ′,
∂

∂t
)dΣc

=

∫

Σc

〈∇K ′

∂

∂t
, ν〉dΣc

=−
∫

Σc

(K ′)aσ
abkνbdΣc.

Similarly, ∫

Σ0

Z · n = −
∫

t=0

(K ′)aσ
abkνbdΣ0.

As a result, to show that limR→∞

∫
t=c,r=R

(K ′)aσ
abkνb is independent of c, it suffices

to show that

lim
R→∞

∫

Ωc

divγZ = 0.
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We have

divγZ =πij〈∇∂iK
′, ∂j〉

=πij〈∇K ′∂i, ∂j〉+O(R−3)

=
1

2R
σabK ′(σab) +O(R−3)

=
1

2R
K ′(ln

√
detσ) +O(R−3)

=
1

2R
K ′(ln

√
detσ

R2 det σ̃
) +O(R−3)

As a result,
∫

Σc′

divγZ =

∫

Σc′

1

2R
K ′(ln

√
detσ

R2 det σ̃
)dΣc′ +O(R−1)

=
1

2R

∫

Σc′

(−divσK
′) ln

√
detσ

R2 det σ̃
dΣc′ +O(R−1)

Moreover, divσK
′ = O(R−1) and ln

√
detσ

R2 det σ̃
= 1 +O(R−1). It follows that

lim
R→∞

∫

Ωc

divγZ = 0.

�

We are now ready to prove the evolution of total angular momentum and center
of mass under the vacuum Einstein evolution equation.

Theorem 9.6. Suppose (M, g, k) is anasymptotically flat initial data of order 1
satisfying the vacuum constraint equation. Let (M, g(t), k(t)) be the solution to the
initial value problem g(0) = g and k(0) = k for the vacuum Einstein evolution
equation with lapse function N = 1+O(r−1) and shift vector γ = γ(−1)r−1+O(r−2).
The total center of mass C i(t) and total angular momentum Ji(t) of (M, g(t), k(t))
satisfy

∂tC
i(t) =

pi

e
,

∂tJi(t) = 0, for

for i = 1, 2, 3 where (e, pi) is the ADM energy momentum of (M, g, k).

Proof. Recall that the center of mass is

C i =
1

8πm
lim
r→∞

E(Σr, Xr, T0(r), A(r)(X
i ∂

∂X0
+X0 ∂

∂X i
))
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where

X0 = (X0)(0) +
(X0)(−1)(t)

r
+ o(r−1)

X i = rX̃ i + (X i)(0) +
(X i)(−1)(t)

r
+ o(r−1)

T0 = (a0, ai) +
T

(−1)
0 (t)

r
+O(r−2)

(9.16)

and A(r) is a family of Lorentz transformation such that T0(r) = A(r)( ∂
∂X0 ). Let

A(r) = A(0) +
A(−1)(t)

r
+ o(r−1).

We have

E(Σr, Xr, T0(r), A(r)(X
i ∂

∂X0
+X0 ∂

∂X i
)) =

1

8π

∫

Σr

X iρ−[A(r)(X i ∂

∂X0
+X0 ∂

∂X i
)]⊤a j

adΣr.

By Theorem 9.2, we have

1

8πm
∂t[ lim

r→∞

∫

Σr

X iρdΣr] =
pi

e
.

Let us compute [A(r)(X i ∂
∂X0 +X0 ∂

∂Xi )]
⊤
a .

[A(r)(X i ∂

∂X0
+X0 ∂

∂X i
)]⊤a

=〈A(r)(X i ∂

∂X0
+X0 ∂

∂X i
),∇aX

α ∂

∂Xα
〉

=X iA(r)0α∇aX
α +X0A(r)iα∇aX

α

=X iA
(0)
0j ∇aX

j +X0A
(0)
ij ∇aX

j +X iA
(0)
00 ∇aX

0 +
1

r
(X iA(−1)(t)0j∇aX

j) + o(r).

The first term, X iA
(0)
0j ∇aX

j, is of order r2. The other terms are of order r. We have

X iA
(0)
0j ∇aX

j =
A

(0)
0j

2
[∇a(X

iXj) +X i∇aX
j −Xj∇aX

i].

Since ∇aja = 0, we have

∂t

∫

Σr

X iA
(0)
0j ∇aX

jjadΣr =
A

(0)
0j

2
∂t

∫

Σr

[(X i∇aX
j −Xj∇aX

i)ja]dΣr.

By Lemma 9.5,

∂t

∫

Σr

[(X i∇aX
j −Xj∇aX

i)ja]dΣr = O(r−1).
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For the second and third term, we have

∂t

∫

Σr

(X0A
(0)
ij ∇aX

j +X iA
(0)
00 ∇aX

0)ja = O(r−1),

since the leading term of X0A
(0)
ij ∇aX

j +X iA
(0)
00 ∇aX

0 and ja are both independent
of t. Finally,∫

Σr

1

r
(X iA(−1)(t)0j∇aX

j)jadΣr = A(−1)(t)0j

∫

S2

(X̃ i∇̃aX̃
j)σ̃abj

(−1)
b +O(r−1).

However, ∫

S2

(X̃ i∇̃aX̃
j)σ̃abj

(−1)
b = 0.

due to ∇̃aj
(−1)
a = 0 and Theorem 7.4.

It follows that

∂tC
i =

pi

e
.

For the total angular momentum,

E(Σr, Xr, T0(r), A(r)(X
i ∂

∂Xj
−Xj ∂

∂X i
)) =

−1

8π

∫

Σr

[A(r)(X i ∂

∂Xj
−Xj ∂

∂X i
)]⊤a j

adΣr.

We compute

A(r)(X i ∂

∂Xj
−Xj ∂

∂X i
)]⊤a

=(X iA
(0)
jk ∇aX

k −XjA
(0)
ik ∇aX

k) +X iA
(0)
j0 ∇aX

0 −XjA
(0)
i0 ∇aX

0

+
1

r
(X iA

(−1)
jk (t)∇aX

k −XjA
(−1)
ik (t)∇aX

k) + o(r),

where (X iA
(0)
jk ∇aX

k−XjA
(0)
ik ∇aX

k) is of order r2 and the other terms are O(r). We
have

(X iA
(0)
jk ∇aX

k −XjA
(0)
ik ∇aX

k)

=
A

(0)
jk

2
[∇a(X

iXk) +X i∇aX
k −Xk∇aX

i]− A
(0)
ik

2
[∇a(X

jXk) +Xj∇aX
k −Xk∇aX

j ].

Then we use ∇aja = 0 and apply Lemma 9.5 and conclude that

∂t

∫

Σr

(X iA
(0)
jk ∇aX

k −XjA
(0)
ik ∇aX

k)jadΣr = O(r−1).

The leading term of X iA
(0)
j0 ∇aX

0 −XjA
(0)
i0 ∇aX

0 is independent of t and thus

∂t

∫

Σr

(X iA
(0)
j0 ∇aX

0 −XjA
(0)
i0 ∇aX

0)jadΣr = O(r−1).
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Finally, for 1
r
(X iA

(−1)
jk (t)∇aX

k−XjA
(−1)
ik (t)∇aX

k), we use ∇̃aj
(−1)
a = 0 and Theorem

7.4 to conclude that

∂t

∫

Σr

1

r
(X iA

(−1)
jk (t)∇aX

k −XjA
(−1)
ik (t)∇aX

k)jadΣr = O(r−1).

It follows that
∂tJi = 0.

�

10. Dynamical formula with weaker asymptotically flat condition

In this section, we prove the dynamical formula of total center of mass and angular
momentum for vacuum initial data sets (M, g, k) satisfying

g =δ +O(r−1)

k =O(r−2).
(10.1)

Assume further that for r large, the optimal embedding equation on the coordinate
spheres Σr has an unique solution Xr = (X0(r), X i(r)) and observers T0(r) with the
following expansion

X0(r) = O(1)

X i(r) = rX̃ i +O(1)

T0(r) = (a0, ai) +O(r−1).

(10.2)

where points to the direction of the total energy-momentum 4-vector.
We can define the total center of mass C i and total angular momentum Ji of the

initial data (M, g, k) using the optimal embedding (Xr, T0(r)) as in Definition 3.1.
However, C i and Ji may be finite or infinite.

Remark 10.1. We will address the existence and uniqueness of solution of optimal
embedding equation at spatial infinity in a forthcoming paper.

Theorem 10.2. Let (M, g, k) be a vacuum initial data set satisfying

g =δ +O(r−1)

k =O(r−2).
(10.3)

Let (M, g(t), k(t)) be the solution to the initial value problem g(0) = g and k(0) = k
for the vacuum Einstein equation with lapse function N = 1+O(r−1) and shift vector
γ = γ(−1)r−1 +O(r−2).

Suppose for r large, the optimal embedding equation on each coordinate sphere
Σr,t has an unique solution (X(r, t), T0(r, t)) with expansion in equation (10.2) and
that the total center of mass C i and total angular momentum Ji of the initial data
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(M, g, k) are finite. Then the total center of mass C i(t) and total angular momentum
Ji(t) of (M, g(t), k(t)) satisfy

∂tC
i(t) =

pi

e
,

∂tJi(t) =0

for i = 1, 2, 3 where (e, pi) is the ADM energy momentum of (M, g, k).

Proof. We have ∂tgij = O(r−2) and ∂tkij = O(r−3). As a result,

σab = r2σ̃ab +O(r), ∂tσab = O(1)

|H| = 2

r
+O(r−2), ∂t|H| = O(r−3)

(αH)a = O(r−1), ∂t(αH)a = O(r−2).

(10.4)

Furthermore, by computing the t-derivative of the optimal embedding equation, we
have

X0 = O(1) +O(r−1), ∂tX
0 = O(r−1)

X i = rX̃ i +O(1), ∂tX
i = O(r−1)

T0 = (a0, ai) +O(r−1), ∂tT0 = O(r−1).

(10.5)

We first prove that

∂t

[
1

8π

∫

Σr,t

X iρ dΣr,t

]
=

pi

a0
+ o(1).

The proof is similar to that of Theorem 9.2. We derive

∂tρ =
∂t(|H0| − |H|)

a0
−

(|H0| − |H|)
∑

j a
j∂tT

j
0

(a0)3r
+O(r−4)

which implies

∂t

[
1

8π

∫

Σr,t

X iρ dΣr,t

]

=
1

8π

∫

Σr,t

X i∂t(|H0| − |H|)
a0

dΣr,t −
∑

j a
j∂tbj(r, t)

8π(a0)3r

∫

Σr,t

X i(|H0| − |H|) dΣr,t

=
1

8π

∫

Σr,t

X i∂t(|H0| − |H|)
a0

dΣr + o(1).

The last equality holds due to Lemma 7.5.
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We compute the two terms separately. Following the argument in the proof of

Lemma 9.3 with ∂tσ
(0)
ab and ∂t

Γc
ab

(−2)

r2
replaced by ∂tσ and ∂tΓ

c
ab, we derive

1

8π

∫

Σr,t

X i∂t|H0|
a0

dΣr,t = O(r−1).

Similarly, following the argument in the proof of Lemma 9.4, we derive

1

8π

∫

Σr,t

X i∂t|H|
a0

dΣr,t = −pi +O(r−1).

We also need the following

(10.6) ∂t[

∫

Σr,t

[X i∇aX
j −Xj∇aX

i]σabjb dΣr,t] = o(1).

Following the proof of Lemma 9.5, we derive

∂t[

∫

Σr,t

[X i∇aX
j−Xj∇aX

i]σabjb dΣr] =

∫

Σr,t

[X i∇aX
j−Xj∇aX

i]σab(∂tjb) dΣr,t+O(r−1).

Recall that

jb = −ρ∇bτ +∇b[sinh
−1(

ρ∆τ

|H||H0|
)]− (αH)b + (αH0)b.

We can prove equation (10.6) using the same argument as in the proof of Lemma

9.5 with ∂t(X0)(−1)

r
and

∂tT
(−1)
0

r
replaced by ∂tX

0 and ∂tT0, respectively and applying
Lemma 7.5 instead of Theorem 7.4.

Finally, we prove that

∂tE(Σr,t, X(r, t), T0(r, t), A(r, t)(X
i ∂

∂X0
+X0 ∂

∂X i
)) =

pi

e
+ o(1)

∂tE(Σr,t, X(r, t), T0(r, t), A(r, t)(X
i ∂

∂Xj
−Xj ∂

∂X i
)) = o(1)

(10.7)

where T0(r, t) = A(r, t) ∂
∂X0 for a family of Lorentz transformation A(r, t).

Equation (10.7) follow from the same argument used in the proof of Theorem 9.6.

Again, we need to replace A(−1)

r
by A−A(0) and use Lemma 7.5 instead of Theorem

7.4. This finishes the proof of the theorem. �

11. Conclusion

The new total angular momentum and total center of mass on asymptotically flat
initial data sets satisfy the following properties:

1. The definition only depends on the geometric data (g, k) and the foliation of
surfaces at infinity, and in particular does not depend on the asymptotically flat
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coordinate system or the existence of asymptotically Killing field on the initial data
set.

2. The definition gives a element in the dual space of the Lie algebra of SO(3, 1).
In particular, the same formula works for total angular momentum and total center
of mass, and the only difference is to pair this element with either a rotation Killing
field or a boost Killing field.

3. It is always finite on any asymptotically flat initial data set of order 1.
4. Both the total angular momentum and total center of mass vanish on any

spacelike hypersurface in the Minkowski spacetime.
5. They satisfy conservation law. In particular, the total angular momentum on

any strictly spacelike hyperurface of the Kerr spacetime is the same.
6. Under the vacuum Einstein evolution of initial data sets, the total angular

momentum is conserved and the total center of mass obeys the dynamical formula

∂tC
i(t) = pi

e
where pi is the ADM linear momentum and e is the ADM energy.

Appendix A. The constraint equation

We prove equation (7.21) and (9.13) regarding the constraint equation here. First
we have the following lemma on the connection coefficients of an asymptotically flat
metric in spherical coordinates.

Lemma A.1. For an asymptotically flat metric of the form

gij = δij +O1(r
−1)

the connection coefficients in spherical coordinates satisfy

Γa
bc = Γ̃a

bc +O(r−1)

Γr
bc = −rσ̃ab +O(1)

Γb
ar =

δba
r
+O(r−2)

Γb
ar = O(r−1)

Γa
rr = O(r−3)

Γr
rr = O(r−2)

Proof. Straightforward calculations. �

Lemma A.2. Let (M, g, k) be an asymptotically flat initial data set of the form

gij = δij +O1(r
−1), k = O(r−2)
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satisfying the vacuum constraint equation and π be the conjugate momentum, then

∇i
gπir =∂rπrr +∇aπar +

2πrr

r
− gabπab

r
+O(r−4)

∇i
gπra =∂rπar −

πar

r
+∇b

σπba +
3πar

r
+O(r−3)

(A.1)

Proof. For asymptotically flat initial data set of order 1, we have the following ex-
pansion for the conjugate momentum.

πrr = O(r−2)

πab = O(1)

πar = O(r−1).

Moreover, we have

grr = 1 +O(r−1)

gab = r−2σ̃ab +O(r−3)

gar = O(r−2).

It is straightforward to verify that

∇i
gπir =grr∂rπrr + gab(∂aπbr − Γc

abπcr − Γr
abπrr − Γc

arπbc) +O(r−4)

=∂rπrr +∇aπar +
2πrr

r
− gabπab

r
+O(r−4)

Similarly,

∇i
gπia =∂rπar −

πar

r
+∇b

σπba +
3πar

r
+O(r−3)

�

Lemma A.3. Let (M, g, k) be an asymptotically flat initial data set of order 1 sat-
isfying the vacuum constraint equation and π be the conjugate momentum. Then

∇i
gπir =

∇̃aπ
(−1)
ar − σ̃abπ

(0)
ab

r3
+O(r−4)

∇i
gπra =

π
(−1)
ar − ∇̃bπ

(0)
ba

r2
+O(r−3).

(A.2)

Proof. For an asymptotically flat initial data set of order 1 , we have

∂rπrr =
−2π

(−2)
rr

r3
+O(r−4)

∂rπar =
−π

(−1)
ar

r2
+O(r−3).

(A.3)
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Combining the above with Lemma A.2 gives the desired result. �
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[10] D. Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space.

Princeton Mathematical Series, 41. Princeton University Press, Princeton, NJ, 1993.
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