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RIGIDITY OF TIME-FLAT SURFACES IN THE MINKOWSKI

SPACETIME

PO-NING CHEN, MU-TAO WANG, AND YE-KAI WANG

Abstract. A time-flat condition on spacelike 2-surfaces in spacetime is considered here.
This condition is analogous to constant torsion condition for curves in three dimensional
space and has been studied in [2, 4, 5, 12, 13]. In particular, any 2-surface in a static
slice of a static spacetime is time-flat. In this article, we address the question in the title
and prove several local and global rigidity theorems for such surfaces in the Minkowski
spacetime.

1. Introduction

The geometry of spacelike 2-surfaces in spacetime plays a crucial role in general relativity.
Penrose’s singularity theorem predicts future singularity formation from the existence of
a trapped surface. A black hole is quasi-locally described by a marginally outer trapped
surface. These conditions can be expressed in terms of the mean curvature vector field H

of the 2-surface. H is the unique normal vector field determined by the variation of the
area functional and is ultimately connected to the warping of spacetime in the vicinity of
the 2-surface. It is thus not surprising that several definitions of quasi-local mass in general
relativity are closely related to the mean curvature vector field. In particular, both the
Hawking mass [7] and the Brown-York-Liu-Yau mass [3, 8] involve the norm of the mean
curvature vector field |H|. In the new definition of quasi-local mass in [12, 13], in addition
to |H|, the direction of the mean curvature vector field is also utilized. When the mean
curvature vector field is spacelike everywhere on Σ (thus |H| > 0), H defines a connection
one-form αH of the normal bundle (see Definition 2 for the precise definition of αH). The
quasi-local mass in [12, 13] is defined in terms of the induced metric σ on the surface, |H|,
and αH . In particular, the condition

(1.1) divσ(αH) = 0

implies that the isometric embedding of Σ into R
3 ⊂ R

3,1 is an optimal embedding in the
sense of [12, 13]. Recently, Bray and Jauregui [2] discovered a very interesting monotonicity
property of the Hawking mass along surfaces that satisfy the condition (1.1). Such surfaces
are said to be “time-flat” in [2] and include all 2-surfaces in a time-symmetric initial data
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set. A natural rigidity question raised by Bray [1] is “Must such a surface in the Minkowski
spacetime lie in a totally geodesic R

3?” Due to the existence of non-flat curves in R
3

with constant torsion, some global condition needs to be imposed in order for the rigidity
property to hold. In this article, we prove several global and local rigidity theorems for
time-flat surfaces in the Minkowski spacetime under various conditions. The local rigidity
theorem holds in any higher dimensional Minkowski spacetime:

Theorem 4. Suppose Σ is a mean convex hypersurface which lies in a totally geodesic

R
n in the n + 1 dimensional Minkowski spacetime R

n,1, then Σ is locally rigid as a time-

flat n− 1 dimensional submanifold in R
n,1. In other words, any infinitesimal deformation

of Σ that preserves the time-flat condition must be a deformation in the R
n direction, a

deformation that is induced by a Lorentz transformation of Rn,1, or a combination of these

two types of deformations.

We also proved two global rigidity theorems:

Theorem 5. Suppose Σ is a time-flat 2-surface in R
3,1 such that αH = 0 and Σ is a

topological sphere, then Σ lies in a totally geodesic hyperplane.

Theorem 6. Suppose Σ is a time-flat 2-surface in R
3,1 such that

(1) The induced metric on Σ is axially symmetric and of positive Gaussian curvature.

(2) Σ can be written as the graph of an axially symmetric function τ over a convex

surface in R
3.

Then Σ lies in a total geodesic hyperplane in R
3,1.

Theorem 4 follows from applying the Reilly formula to the linearized equation (3.7).
Theorem 6 uses a mean curvature comparison lemma derived in [5] and the minimizing
property of critical points of the Wang-Yau energy. Theorem 4 is proved in §3, Theorem 5
is proved in §4, and Theorem 6 is proved in §5.

2. Geometry of spacelike 2-surface in spacetime

Let N be a time-oriented spacetime. Denote the Lorentzian metric on N by 〈·, ·〉 and
covariant derivative by ∇N . Let Σ be a closed space-like two-surface embedded in N .
Denote the induced Riemannian metric on Σ by σ and the gradient and Laplace operator
of σ by ∇ and ∆, respectively.

Given any two tangent vector X and Y of Σ, the second fundamental form of Σ in
N is given by II(X,Y ) = (∇N

XY )⊥ where (·)⊥ denotes the projection onto the normal
bundle of Σ. The mean curvature vector is the trace of the second fundamental form, or
H = trΣII =

∑2
a=1 II(ea, ea) where {e1, e2} is an orthonormal basis of the tangent bundle

of Σ.
The normal bundle is of rank two with structure group SO(1, 1) and the induced metric

on the normal bundle is of signature (−,+). Since the Lie algebra of SO(1, 1) is isomorphic
to R, the connection form of the normal bundle is a genuine 1-form that depends on the
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choice of the normal frames. The curvature of the normal bundle is then given by an exact
2-form which reflects the fact that any SO(1, 1) bundle is topologically trivial. Connections
of different choices of normal frames differ by an exact form. We define (see [13])

Definition 1. Let e3 be a space-like unit normal along Σ, the connection one-form deter-

mined by e3 is defined to be

(2.1) αe3 = 〈∇N
(·)e3, e4〉

where e4 is the future-directed time-like unit normal that is orthogonal to e3.

Definition 2. Suppose the mean curvature vector field H of Σ in N is a spacelike vector

field. The connection one-form in mean curvature gauge is

αH = 〈∇N
(·)e3, e4〉,

where e3 = − H
|H| and e4 is the future-directed timelike unit normal that is orthogonal to e3.

3. Local rigidity of mean convex hypersurfaces in R
n ⊂ R

n,1

The local rigidity theorem holds in higher dimensional Minkowski spacetime as well. Let
Σ be a closed embedded spacelike codimension-2 submanifold in Minkowski spacetime Rn,1

and σ be its induced metric. Suppose that the mean curvature vector H of Σ is spacelike.
Let en = − H

|H| and en+1 be the unit future timelike normal that is orthogonal to en. Let

αH = 〈∇(·)en, en+1〉 be the connection one-form on the normal bundle of Σ determined by
the mean curvature gauge.

Definition 3. We say Σ is time-flat if divσ(αH) = 0.

The local rigidity problem can be formulated as follows. Suppose Σ is time-flat and
is given by an embedding X. Suppose V is a smooth vector field along Σ such that the
image of X(s) = X+sV is infinitesimally time-flat in the sense the derivatives of divσ(αH)
along the image with respect to s is zero when s = 0. Do all such V correspond to trivial
deformations?

It is easy to see that submanifolds lying in a totally geodesic slice is time-flat. We assume
∂Ω = Σ ⊂ {t = 0} = R

n. It is clear that any deformation in the Rn direction preserves the
time-flat condition. On the other hand, a Lorentz transformation preserves the geometry
of Σ and thus preserves the time-flat condition.

Let ∇,∆ denote the covariant derivative and Laplacian of the induced metric σ. Let
hab, h be the second fundamental form and mean curvature of Σ ⊂ R

n with respect to the
outward unit normal ν.

Theorem 4. Suppose Σ is a mean convex hypersurface which lies in a totally geodesic

R
n in the n + 1 dimensional Minkowski spacetime R

n,1, then Σ is locally rigid as a time-

flat n− 1 dimensional submanifold in R
n,1. In other words, any infinitesimal deformation

of Σ that preserves the time-flat condition must be a deformation in the R
n direction, a

deformation that is induced by a Lorentz transformation of Rn,1, or a combination of these

two types of deformations.
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Proof. In this proof, we denote αH by α. Since δ(divσα) depends linearly on infinitesimal
deformation and any deformation in R

n corresponds to trivial deformations, it suffices
to consider deformations in the time direction. Let V = f ∂

∂t
for a smooth function f

defined on Σ be such an infinitesimal deformation and X(s) = (τ(s),X1(s), . . . ,Xn(s))
be the corresponding deformation. Since we only vary the surface in the time direction,
Xi(s) = Xi(0) for i = 1, . . . , n, and ∂

∂s

∣∣
s=0

τ(s) = f.

We start by computing the variation of divσα. The induced metrics satisfy

σ(s)ab = σab −
∂τ(s)

∂ua
∂τ(s)

∂ub
.(3.1)

Since τ(0) = 0, δσ = 0. Let ∆s be the Laplacian of the induced metric on X(s). We have

H = (∆sτ(s),∆sX
1, . . . ,∆sX

n).(3.2)

δσ = 0 implies the infinitesimal variation of Laplacian is zero. Therefore, we have

δH = (∆f)
∂

∂t
(3.3)

δ|H|2 = 2〈δH,−hen〉 = 0(3.4)

δen = −δH

h
+

δ|H|
h2

H = −∆f

h

∂

∂t
(3.5)

From 0 = δ〈en+1,
∂

∂ua 〉 = δ〈en+1, en〉, we have

δen+1 = ∇f − ∆f

h
en(3.6)

Putting these facts together, we get

(δα)a = δ〈Daen, en+1〉

= 〈D ∂f
∂ua

∂
∂t

en, en+1〉+ 〈Da

(
−∆f

h

)
∂

∂t
,
∂

∂t
〉+ 〈Daen,∇f +∆fen〉

= ∇a

(
∆f

h

)
+ hab∇bf

and

(3.7) δ(divσα) = ∆

(
∆f

h

)
+∇a

(
hab∇bf

)
.

We remark that the linearization of this operator was also derived in [4, 9]. Let u solve the
Dirichlet problem

{
∆u = 0 in Ω
u = f on Σ

We recall the Reilly formula on R
n

∫

Ω
|D2u|2 = −

∫

Σ

(
hab∇af∇bf + 2∆fen(u) + h(en(u))

2
)
.(3.8)
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This was used in [9] to derive minimizing property of the Wang-Yau quasi-local energy.
On the other hand, multiply δ(divσα) = 0 by f and integrate over Σ to get

∫

Σ

(∆f)2

h
− hab∇af∇bf = 0.(3.9)

Adding (3.8) and (3.9) together and completing square, we obtain
∫

Ω
|D2u|2 +

∫

Σ

(
∆f√
h
+

√
hen(u)

)2

= 0.

Hence u is a linear function up to a constant. �

4. Global rigidity for surfaces with αH = 0

The global rigidity holds true if one assumes in addition that αH = 0.

Theorem 5. Suppose Σ is a time-flat 2-surface in R
3,1 such that αH = 0 and Σ is a

topological sphere, then Σ lies in a totally geodesic R
3

Proof. Denote by e3 = − H
|H| and e4 to be the unit future timelike normal that is orthogonal

to e3. The second fundamental form of Σ can be written as h3abe3 − h4abe4 and h4ab is trace-
free. The Codazzi equation for h4ab reads

∇ah4ab −∇btrσh
4 + (αH)ah4ab − trσh

4(αH)b = 0.

Since αH = 0 and h4ab is trace-free, this reduces to

∇ah4ab = 0.

A divergence-free symmetric trace-free 2-tensor corresponds to a holomorphic quadratic
differential, which must vanish since Σ is a topological sphere. In particular, h3ab and
h4ab can be diagonalized simultaneously. By [14], it follows that Σ lies in a umbilical
hypersurface in R

3,1. If Σ lies in a totally geodesic R
3 then the proof is finished. If Σ

lies in a hyperbola in R
3,1 then the position vector is a unit timelike normal of Σ and the

connection form determined by the position vector is also zero. Hence, the angle between
e4 and the position vector is constant. It follows that Σ has constant mean curvature in
the hyperbola. Hence, Σ is a round sphere in the hyperbola and thus the intersection of a
totally geodesic R

3 with the hyperbola. �

5. Wang–Yau quasi-local energy.

In the next section, the positivity of Wang–Yau quasi-local energy is used to prove the
global rigidity of time-flat axially symmetric surfaces in R

3,1. We recall the definition of
Wang–Yau quasi-local energy in this section. Let Σ be a spacelike surface in a spacetime
N . The definition of Wang–Yau quasi-local energy relies on the physical data on Σ which
consist of the induced metric σ, the norm of the mean curvature vector |H| > 0, and
the connection one-form αH . Given the triple of physical data {σ, |H|, αH}, one assigns a
quasi-local energy for each pair of isometric embeddingX of Σ into R3,1 and future-directed
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unit timelike vector T0 in R
3,1. In terms of τ = −X · T0, the quasi-local energy is defined

to be

E(Σ, τ) =

∫

Σ̂
ĤdvΣ̂ −

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dvΣ,(5.1)

where∇ and ∆ are the covariant derivative and Laplace operator with respect to σ, and θ is

defined by sinh θ = −∆τ

|H|
√

1+|∇τ |2
. Finally, Σ̂ is the projection of X(Σ) onto the complement

of T0 and Ĥ is the mean curvature of Σ̂ in R
3. In E(Σ, τ), the first argument Σ represents

a physical surface in spacetime with the data (σ, |H|, αH ), while the second argument τ

indicates an isometric embedding of the induced metric into R
3,1 with time function τ with

respect to T0. As remarked in [5], no information is lost by choosing a fixed future-directed
unit timelike vector T0 and considering E(Σ, τ) as a energy functional on functions on Σ.

6. Global rigidity for axially symmetric and time-flat surfaces in R
3,1.

In this section, we prove the following theorem for the global rigidity of time-flat axially
symmetric surfaces in R

3,1.

Theorem 6. Suppose Σ is a time-flat 2-surface in R
3,1 such that

(1) The induced metric on Σ is axially symmetric and of positive Gaussian curvature.

(2) Σ can be written as the graph of an axially symmetric function τ over a convex

surface in R
3.

Then Σ lies in a total geodesic hyperplane in R
3,1.

Proof. Let σ be the induced metric on Σ and K be the Gaussian curvature of σ. By
condition (1) and the isometric embedding theorem of Nirenberg and Pogorelov [10, 11],
there exists a unique isometric embedding of Σ into R

3. Denote the image by Σ0, which is
a convex surface in R

3.
From condition (2) and equation (3.3) of [13], it follows

K +
det(∇2τ)

1 + |∇τ |2 > 0.

This together with K > 0 implies that, for any 0 ≤ s ≤ 1,

K +
det(∇2sτ)

1 + |∇sτ |2 > 0.

Hence, there is a unique isometric embedding of the surface into R
3,1 with time function sτ

for any 0 ≤ s ≤ 1 by Theorem 3.1 of [13]. Denote the image by Σs and its mean curvature
vector by Hs. Up to a Lorentz transformation, we can assume that Σ1 = Σ. Let E(Σ0, sτ)
be the quasi-local energy for the surface Σ0 with reference embedding Σs.

Lemma 3 of [5] gives the following inequality about the mean curvature vectors of Σs

(6.1) |H0| ≥ |Hs|
for any 0 ≤ s ≤ 1. Namely, for axially symmetric surfaces with the same induced metric in
R
3,1, the isometric embedding into R

3 has the largest norm of the mean curvature vector.



TIMEFLAT SURFACE 7

We prove the theorem by combining equation (6.1) with an inequality obtained from the
positivity of Wang–Yau quasi-local energy.

We treat Σ0 in the totally geodesic R
3 in R

3,1 as a surface in a spacetime. Namely, it
comes with the physical data {σ, |H0|, 0}. We consider the Wang–Yau quasi-local energy
for other isometric embedding of Σ0 into R

3,1. Fixing a future-directed unit timelike vector
T0 in R

3,1, the quasi-local energy becomes an functional E(Σ0, f) for functions on Σ0. Since
the data {σ, |H0|, 0} comes from the surface Σ0 embedded in R

3,1, E(Σ0, 0) = 0 and it is
natural to expect that quasi-local energy for other isometric embedding is non-negative.
Namely, one expects that f = 0 is the global minimum of the quasi-local energy functional
E(Σ0, f). The following lemma shows that this holds in axially symmetric cases.

Lemma 7. Let Σ0 be any convex and axially symmetric surface in a totally geodesic R
3

in R
3,1 and K be the Gaussian curvature of the induced metric σ. Suppose τ is an axially

symmetric function on Σ0 such that

K +
det(∇2τ)

1 + |∇τ |2 > 0.

Then

E(Σ0, τ) ≥ 0.

Namely, f = 0 is the global minimum of the quasi-local energy functional E(Σ0, f) among

all axially symmetric time functions.

Proof. This follows from Lemma 2 of [5] and equation (6.1). �

By Proposition 3.2 of [12], E(Σ0, τ) can be written as

E(Σ0, τ) =

∫

Σ

√
(1 + |∇τ |2)|H1|2 + (∆τ)2 −∆τ sinh−1(

∆τ

|H1|
√

1 + |∇τ |2
)− αH1

(∇τ)

−
∫

Σ

√
(1 + |∇τ |2)|H0|2 + (∆τ)2 −∆τ sinh−1(

∆τ

|H0|
√

1 + |∇τ |2
)− αH0

(∇τ).

Since Σ is time-flat and αH0
= 0, it follows that

E(Σ0, τ) =

∫

Σ

√
(1 + |∇τ |2)|H1|2 + (∆τ)2 −∆τ sinh−1(

∆τ

|H1|
√

1 + |∇τ |2
)

−
∫

Σ

√
(1 + |∇τ |2)|H0|2 + (∆τ)2 −∆τ sinh−1(

∆τ

|H0|
√

1 + |∇τ |2
)

≥0

(6.2)

Combining equation (6.1) and (6.2), it follows that |H0| = |H1| and E(Σ0, τ) = 0. From
the proof of Lemma 2 of [5], it follows that E(Σ0, sτ) = 0 for all s. In particular,

∂2
s

∣∣
s=0

E(Σ0, sτ) = 0

Applying Theorem 1.3 and Lemma 2.1 of [9] to the critical point f = 0 of the quasi-local
energy functional E(Σ0, f), one concludes that τ is a linear combination of the coordinate
functions of Σ0 up to a constant. It follows that Σ lies in a totally geodesic R

3 in R
3,1. �
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A corollary of Theorem 6 is a uniqueness theorem for isometric embeddings of an axially
symmetric metric into R

3,1.

Corollary 8. Let σ be an axially-symmetric metric on S2 with positive Gaussian curvature.

Suppose X is a time-flat isometric embedding of σ into R
3,1 such that the image can be

written as the graph of an axially-symmetric function over a convex surface in R
3. Then

X must lie in a totally geodesic hyperplane.

In view of the classical rigidity theorem of isometric embeddings [6] for metrics of positive
Gaussian curvature into R

3, the following conjecture is a natural extension by imposing
the additional time-flat condition to make the problem a well-determined system:

Conjecture 9. Let σ be a metric on S2 with positive Gaussian curvature. Suppose X is

a time-flat isometric embedding of σ into R
3,1 such that the image can be written as the

graph over a convex surface in R
3. Then the image of X must lie in a totally geodesic

hyperplane.
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