
ar
X

iv
:1

30
2.

53
21

v2
  [

m
at

h.
D

G
] 

 1
5 

Ju
n 

20
13

MINIMIZING PROPERTIES OF CRITICAL POINTS

OF QUASI-LOCAL ENERGY

PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

Abstract. In relativity, the energy of a moving particle depends on the observer, and
the rest mass is the minimal energy seen among all observers. The Wang–Yau quasi-
local mass for a surface in spacetime introduced in [7] and [8] is defined by minimizing
quasi-local energy associated with admissible isometric embeddings of the surface into
the Minkowski space. A critical point of the quasi-local energy is an isometric embedding
satisfying the Euler-Lagrange equation. In this article, we prove results regarding both
local and global minimizing properties of critical points of the Wang–Yau quasi-local
energy. In particular, under a condition on the mean curvature vector we show a critical
point minimizes the quasi-local energy locally. The same condition also implies that the
critical point is globally minimizing among all axially symmetric embedding provided the
image of the associated isometric embedding lies in a totally geodesic Euclidean 3-space.

1. Introduction

Let Σ be a closed embedded spacelike 2-surface in a spacetime N . We assume Σ is a
topological 2-sphere and the mean curvature vector field H of Σ in N is a spacelike vector
field. The mean curvature vector field defines a connection one-form of the normal bundle
αH = 〈∇N

(·)e3, e4〉, where e3 = − H
|H| and e4 is the future unit timelike normal vector that

is orthogonal to e3. Let σ be the induced metric on Σ.
We shall consider isometric embeddings of σ into the Minkowski space R

3,1. We recall
that this means an embedding X : Σ → R

3,1 such that the induced metric on the image
is σ. Throughout this paper, we shall fix a constant unit timelike vector T0 in R

3,1. The
time function τ on the image of the isometric embedding X is defined to be τ = −X · T0.
The existence of such an isometric embedding is guaranteed by a convexity condition on σ

and τ (Theorem 3.1 in [8]). The condition is equivalent to that the metric σ+ dτ ⊗ dτ has

positive Gaussian curvature. Let Σ̂ be the projection of the image of X, X(Σ), onto the

orthogonal complement of T0, a totally geodesic Euclidean 3-space in R
3,1. Σ̂ is a convex

2-surface in the Euclidean 3-space. Then the isometric embedding of Σ into R
3,1 with time

function τ exists and is unique up to an isometry of the orthogonal complement of T0.
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In [7] and [8], Wang and Yau define a quasi-local energy for a surface Σ with spacelike
mean curvature vector H in a spacetime N , with respect to an isometric embedding X of
Σ into R

3,1. The definition relies on the physical data on Σ which consist of the induced
metric σ, the norm of the mean curvature vector |H| > 0, and the connection one-form αH .
The definition also relies on the reference data from the isometric embedding X : Σ → R

3,1

whose induced metric is the same as σ. In terms of τ = −X · T0, the quasi-local energy is
defined to be 1

E(Σ, τ) =

∫

Σ̂
ĤdvΣ̂ −

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dvΣ,(1.1)

where ∇ and ∆ are the covariant derivative and Laplace operator with respect to σ, and θ

is defined by sinh θ = −∆τ

|H|
√

1+|∇τ |2
. Finally, Ĥ is the mean curvature of Σ̂ in R

3. We note

that in E(Σ, τ), the first argument Σ represents a physical surface in spacetime with the
data (σ, |H|, αH ), while the second argument τ indicates an isometric embedding of the
induced metric into R

3,1 with time function τ with respect to the fixed T0.
The Wang–Yau quasi-local mass for the surface Σ in N is defined to be the minimum

of E(Σ, τ) among all “admissible” time functions τ (or isometric embeddings). This ad-
missible condition is given in Definition 5.1 of [8] (see also section 3.1). This condition for
τ implies that E(Σ, τ) is non-negative if N satisfies the dominant energy condition. We
recall the Euler–Lagrange equation for the functional E(Σ, τ) of τ , which is derived in [8].
Of course, a critical point τ of E(Σ, τ) satisfies this equation.

Definition 1. Given the physical data (σ, |H|, αH ) on a 2-surface Σ. We say that a smooth
function τ is a solution to the optimal embedding equation for (σ, |H|, αH ) if the metric

σ̂ = σ + dτ ⊗ dτ can be isometrically embedded into R
3 with image Σ̂ such that

(1.2) − (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = 0

where ∇ and ∆ are the covariant derivative and Laplace operator with respect to σ, θ is

defined by sinh θ = −∆τ

|H|
√

1+|∇τ |2
. ĥab and Ĥ are the second fundamental form and the mean

curvature of Σ̂, respectively.

It is natural to ask the following questions:

(1) How do we find solutions to the optimal embedding equation?
(2) Does a solution of the optimal embedding equation minimize E(Σ, τ), either locally

or globally?

Before addressing these questions, let us fix the notation on the space of isometric
embeddings of (Σ, σ) into R

3,1.

1This notation E(Σ, τ ) is slightly different from [7] and [8] where E(Σ, X, T0) is considered. However,
no information is lost as long as only energy and mass are considered (as opposed to energy-momentum
vector).
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Notation 1. T0 is a fixed constant future timelike unit vector throughout the paper, Xτ

will denote an isometric embedding of σ into R
3,1 with time function τ = −X · T0. We

denote the image of Xτ by Στ , the mean curvature vector of Στ by Hτ and the connection
one-form of the normal bundle of Στ determined by Hτ by αHτ . We denote the projection

of Στ onto the orthogonal complement of T0 by Σ̂τ and the mean curvature of Σ̂τ by Ĥτ .

In particular, when σ has positive Gauss curvature, X0 will denote an isometric embed-
ding of σ into the orthogonal complement of T0. Σ0 denotes the image of X0, The mean
curvature H0 of Σ0 can be viewed as a positive function by the assumption.

In [2], the authors studied the above questions at spatial or null infinity of asymptot-
ically flat manifolds and proved that a series solution exists for the optimal embedding
equation, the solution minimizes the quasi-local energy locally and the mass it achieves
agrees with the ADM or Bondi mass at infinity for asymptotically flat manifolds. On
the other hand, when αH is divergence free, τ = 0 is a solution to the optimal embed-
ding equation. Miao–Tam–Xie [4] and Miao–Tam [5] studied the time-symmetric case and
found several conditions such that τ = 0 is a local minimum. In particular, this holds if
H0 > |H| > 0 where H0 is the mean curvature of the isometric embedding X0 of Σ into
R
3 (i.e. with time function τ = 0).
For theorems proved in this paper, we impose the following assumption on the physical

surface Σ.

Assumption 1. Let Σ be a closed embedded spacelike 2-surface in a spacetime N satisfying
the dominant energy condition. We assume that Σ is a topological 2-sphere and the mean
curvature vector field H of Σ in N is a spacelike vector field.

We first prove the following comparison theorem among quasi-local energies.

Theorem 1. Suppose Σ satisfies Assumption 1 and τ0 is a is a critical point of the quasi-
local energy functional E(Σ, τ). Assume further that

|Hτ0 | > |H|
where Hτ0 is the mean curvature vector of the isometric embedding of Σ into R

3,1 with time
function τ0. Then, for any time function τ such that σ + dτ ⊗ dτ has positive Gaussian
curvature, we have

E(Σ, τ) ≥ E(Σ, τ0) + E(Στ0 , τ).

Moreover, equality holds if and only if τ − τ0 is a constant .

As a corollary of Theorem 1, we prove the following theorem about local minimizing
property of an arbitrary, non-time-symmetric, solution to the optimal embedding equation.

Theorem 2. Suppose Σ satisfies Assumption 1 and τ0 is a critical point of the quasi-local
energy functional E(Σ, τ). Assume further that

|Hτ0 | > |H| > 0

where Hτ0 is the mean curvature vector of the isometric embedding Xτ0 of Σ into R
3,1 with

time function τ0. Then, τ0 is a local minimum for E(Σ, τ).
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The special case when τ0 = 0 was proved by Miao–Tam–Xie [4]. They estimate the
second variation of quasi-local energy around the critical point τ = 0 by linearizing the
optimal embedding equation near the critical point and then applying a generalization
of Reilly’s formula. As we allow τ0 to be an arbitrary solution of the optimal isometric
embedding equation, a different method is devised to deal with the fully nonlinear nature
of the equation.

In general, the space of admissible isometric embeddings as solutions of a fully nonlinear
elliptic system is very complicated and global knowledge of the quasi-local energy is difficult
to obtained. However, we are able to prove a global minimizing result in the axially
symmetric case.

Theorem 3. Let Σ satisfy Assumption 1. Suppose that the induced metric σ of Σ is axially
symmetric with positive Gauss curvature, τ = 0 is a solution to the optimal embedding
equation for Σ in N , and

H0 > |H| > 0.

Then for any axially symmetric time function τ such that σ + dτ ⊗ dτ has positive Gauss
curvature,

E(Σ, τ) ≥ E(Σ, 0).

Moreover, equality holds if and only if τ is a constant .

This theorem will have applications in studying quasi-local energy in the Kerr spacetime,
or more generally an axially symmetric spacetime. It is very likely that the global minimum
of quasilocal energy of an axially symmetric datum is achieved at an axially symmetric
isometric embedding into the Minkowski, though we cannot prove it at this moment. In
[4], Miao, Tam and Xie described several situations where the condition H0 > |H| holds.
In particular, this includes large spheres in Kerr spacetime.

In section 2, we prove Theorem 1 using the nonlinear structure of the quasi-local energy.
In section 3, we prove the admissibility of the time function τ for the surface Στ0 in R

3,1

when τ is close to τ0. The positivity of quasi-local mass follows from the admissibility
of the time function. Combining with Theorem 1, this proves Theorem 2. In section 4,
we prove Theorem 3. Instead of using admissibility, we prove the necessary positivity of
quasi-local energy using variation of quasi-local energy and a point-wise mean curvature
inequality.

2. A comparison theorem for quasi-local energy

In this section, we prove Theorem 1.

Proof. We start with a metric σ and consider an isometric embedding into R
3,1 with time

function τ0. The image is an embedded space-like 2-surface Στ0 in R
3,1. The corresponding

data on Στ0 are denoted as |Hτ0 | and αHτ0
. We consider the quasi-local energy of Στ0 as

a physical surface in the spacetime R
3,1 with respect to another isometric embedding Xτ

into R
3,1 with time function τ . We recall that

E(Στ0 , τ) =

∫

Σ̂τ

ĤdvΣ̂τ
−
∫

Σ

[√
1 + |∇τ |2 cosh θ(τ,τ0)|Hτ0 | − ∇τ · ∇θ(τ,τ0) − αHτ0

(∇τ)
]
dvΣ
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where θ(τ,τ0) is defined by sinh θ(τ,τ0) =
−∆τ

|Hτ0
|
√

1+|∇τ |2
.

Using E(Στ0 , τ), E(Σ, τ) can be expressed as

E(Σ, τ) =

∫

Σ̂
ĤdvΣ̂ −

∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dvΣ

= E(Στ0 , τ) +A

(2.1)

where

A =

∫

Σ

[√
1 + |∇τ |2 cosh θ(τ,τ0)|Hτ0 | − ∇τ · ∇θ(τ,τ0) − αHτ0

(∇τ)
]
dvΣ

−
∫

Σ

[√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

]
dvΣ.

(2.2)

In the following, we shall show that A ≥ E(Σ, τ0).
One can rewrite divσαH and divσαHτ0

using the optimal embedding equation. First, τ0
is a solution to the original optimal embedding equation. We have

divσαH =− (Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ0√
1 + |∇τ0|2

+ divσ

[
∇τ0√

1 + |∇τ0|2

√
H2 +

(∆τ0)2

1 + |∇τ0|2

]

+∆

[
sinh−1 ∆τ0

|H|
√

1 + |∇τ0|2

]

(2.3)

where ĥab and Ĥ are the second fundamental form and mean curvature of Σ̂τ0 , respectively.
On the other hand, τ = τ0 locally minimizes E(Στ0 , τ) by the positivity of quasi-local

energy. Hence,

divσαHτ0
=− (Ĥσ̂ab − σ̂acσ̂bdĥcd)

∇b∇aτ0√
1 + |∇τ0|2

+ divσ

[
∇τ0√

1 + |∇τ0|2

√
H2

τ0 +
(∆τ0)2

1 + |∇τ0|2

]

+∆

[
sinh−1 ∆τ0

|Hτ0 |
√

1 + |∇τ0|2

]

(2.4)

where ĥab and Ĥ are the same as in equation (2.3) (this can be verified directly as in [9]).
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Using equations (2.3) and (2.4), we have

A =

∫

Σ

√
(1 + |∇τ |2)|Hτ0 |2 + (∆τ)2 −

√
(1 + |∇τ |2)|H|2 + (∆τ)2

−∆τ sinh−1(
∆τ

|Hτ0 |
√

1 + |∇τ |2
) + ∆τ sinh−1(

∆τ

|H|
√

1 + |∇τ |2
)

+ ∆τ sinh−1(
∆τ0

|Hτ0 |
√

1 + |∇τ0|2
)−∆τ sinh−1(

∆τ0

|H|
√

1 + |∇τ0|2
)

− ∇τ0 · ∇τ√
1 + |∇τ0|2

[√
|Hτ0 |2 +

(∆τ0)2

1 + |∇τ0|2
−
√

|H|2 + (∆τ0)2

1 + |∇τ0|2
]
.

With a new variable x = ∆τ√
1+|∇τ |2

and x0 =
∆τ0√

1+|∇τ0|2
, the first six terms of the integrand

is simply
√

1 + |∇τ |2
[√

|Hτ0 |2 + x2 −
√

|H|2 + x2

− x
(
sinh−1 x

|Hτ0 |
− sinh−1 x

|H| − sinh−1 x0

|Hτ0 |
+ sinh−1 x0

|H|
)]
.

Let

f(x) =
√

|Hτ0 |2 + x2 −
√

|H|2 + x2

− x

[
sinh−1 x

|Hτ0 |
− sinh−1 x

|H| − sinh−1 x0

|Hτ0 |
+ sinh−1 x0

|H|

]
.

Direct computation shows that

f ′(x) = sinh−1 x

|H| − sinh−1 x

|Hτ0 |
+ sinh−1 x0

|Hτ0 |
− sinh−1 x0

|H| .

If |Hτ0 | > |H|, f(x0) =
√

|Hτ0 |2 + x20 −
√

|H|2 + x20 is the global minimum for f(x) and
equality holds if and only if x = x0. Hence,

A ≥
∫

Σ
(
√

1 + |∇τ |2 − ∇τ0 · ∇τ√
1 + |∇τ0|2

)
[√

|Hτ0 |2 +
(∆τ0)2

1 + |∇τ0|2
−
√

|H|2 + (∆τ0)2

1 + |∇τ0|2
]

≥
∫

Σ
(

1√
1 + |∇τ0|2

)
[√

|Hτ0 |2 +
(∆τ0)2

1 + |∇τ0|2
−
√

|H|2 + (∆τ0)2

1 + |∇τ0|2
]

The last inequality follows simply from

(
√

1 + |∇τ |2 − ∇τ0 · ∇τ√
1 + |∇τ0|2

) ≥ (
√

1 + |∇τ |2 − |∇τ0||∇τ |√
1 + |∇τ0|2

) ≥ 1√
1 + |∇τ0|2

and equality holds if and only if ∇τ = ∇τ0. On the other hand,

E(Σ, τ0) =

∫

Σ
(

1√
1 + |∇τ0|2

)
[√

|Hτ0 |2 +
(∆τ0)2

1 + |∇τ0|2
−
√

|H|2 + (∆τ0)2

1 + |∇τ0|2
]
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if one evaluates divσαH and divσαHτ0
using equations (2.3) and (2.4). �

3. Local minimizing property of critical points of quasi-local energy

In this section, we start with a metric σ and consider an isometric embedding into R
3,1

with time function τ0. The image is an embedded space-like 2-surface Στ0 in R
3,1. The

corresponding data on Στ0 are denoted as |Hτ0 | and αHτ0
. We consider the quasi-local

energy of Στ0 as a physical surface in the spacetime R
3,1 with respect to another isometric

embedding Xτ into R
3,1 with time function τ . In this section, we prove that for τ close to

τ0, τ is admissible with respect to the surface Στ0 . This shows that, for τ close to τ0, we
have

E(Στ0 , τ) ≥ 0

3.1. Admissible isometric embeddings. We recall definitions and theorems related to
admissible isometric embeddings from [8].

Definition 2. Suppose i : Σ →֒ N is an embedded spacelike two-surface in a spacetime
N . Given a smooth function τ on Σ and a spacelike unit normal e3, the generalized mean
curvature associated with these data is defined to be

h(Σ, i, τ, e3) = −
√
1 + |∇τ |2〈H, e3〉 − αe3(∇τ)

where, as before, H is the mean curvature vector of Σ in N and αe3 is the connection form
of the normal bundle determined by e3.

Recall, in Definition 5.1 of [8], given a physical surface Σ in spacetime N with induced
metric σ and mean curvature vector H, there are three conditions for a function τ to be
admissible.

(1) The metric, σ + dτ ⊗ dτ , has positive Gaussian curvature.
(2) Σ bounds a hypersurface Ω in N where Jang’s equation with Dirichlet boundary

condition τ is solvable on Ω . Let the solution be f .
(3) The generalized mean curvature h(Σ, i, τ, e′3) is positive where e′3 is determined by

the solution f of Jang’s equation as follows:

e′3 = cosh θe3 + sinh θe4

where sinh θ = e3(f)√
1+|∇τ |2

and e3 is the outward unit spacelike normal of Σ in Ω, e4

is the future timelike unit normal of Ω in N .

We recall that from [8] if τ corresponds to an admissible isometric embedding and Σ is a
2-surface in spacetime N that satisfies Assumption 1, then the quasi-local energy E(Σ, τ)
is non-negative.
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3.2. Solving Jang’s equation. Let (Ω, gij) be a Riemannian manifold with boundary
∂Ω = Σ. Let pij be a symmetric 2-tensor on Ω. The Jang’s equation asks for a hypersurface

Ω̃ in Ω×R, defined as a graph of a function f over Ω, such that the mean curvature of Ω̃

is the same as the trace of the restriction of p to Ω̃ . In a local coordinate xi on Ω, Jang’s
equation takes the following form:

3∑

i,j=1

(gij − f if j

1 + |Df |2 )(
DiDjf√
1 + |Df |2

− pij) = 0

where D is the covariant derivative with respect to the metric gij . When pij = 0, Jang’s
equation becomes the equation for minimal graph. Equation of of minimal surface type
may have blow-up solutions. In [6], it is shown by Schoen-Yau that solutions of Jang’s
equation can only blow-up at marginally trapped surface in Ω. Namely, surfaces S in Ω
such that

HS ± trSp = 0.

Following the analysis of Jang’s equation in [6] and [8], we prove the following theorem
for the existence of solution to the Dirichlet problem of Jang’s equation.

Theorem 4. Let (Ω, gij) be a Riemannian manifold with boundary ∂Ω = Σ, pij be a
symmetric 2-tensor on Ω, and τ be a function on Σ. Then Jang’s equation with Dirichlet
boundary data τ is solvable on Ω if

HΣ > |trΣp|,

and there is no marginally trapped surface inside Ω.

Following the approach in [6] and Section 4.3 of [8], it suffices to control the boundary
gradient of the solution to Jang’s equation. We have the following theorem:

Theorem 5. The normal derivative of a solution of the Dirichlet problem of Jang’s equa-
tion is bounded if

HΣ > |trΣp|.

Remark 1. In [1], Andersson, Eichmair and Metzger proved a similar result about bound-
edness of boundary gradient of solutions to Jang’s equation in order to study existence of
marginally trapped surfaces.

Proof. We follow the approach used in Theorem 4.2 of [8] but with a different form for the
sub and super solutions. Let gij and pij be the induced metric and second fundamental
form of the hypersurface Ω. Let Σ be the boundary of Ω with induced metric σ and mean
curvature HΣ in Ω. We consider the following operator for Jang’s equation.

Q(f) =

3∑

i,j=1

(gij − f if j

1 + |Df |2 )(
DiDjf√
1 + |Df |2

− pij).
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We extend the boundary data τ to the interior of the hypersurface Ω. We still denote the
extension by τ . Consider the following test function

f =
Ψ(d)

ǫ
+ τ

where d is the distance function to the boundary of Ω. We compute

Dif =
1

ǫ
Ψ′di +Diτ

DiDjf =
1

ǫ
(Ψ′′didj +Ψ′DiDjd) +DiDjτ

Therefore,

Q(f) =(gij − f if j

1 + |Df |2 )(
DiDjf√
1 + |Df |2

− pij)

=
1

ǫ
(gij − f if j

1 + |Df |2 )
Ψ′′didj√
1 + |Df |2

+
1

ǫ
(gij − f if j

1 + |Df |2 )
Ψ′DiDjd√
1 + |Df |2

+ (gij − f if j

1 + |Df |2 )
DiDjτ√
1 + |Df |2

+ (gij − f if j

1 + |Df |2 )pij

At the boundary of Ω, it is convenient to use a frame {ea, e3} where ea are tangent to the
boundary and e3 is normal to the boundary.

D3f =
1

ǫ
Ψ′ +Dnτ

Daf =Daτ.

As ǫ approaches 0, we have

ǫ
√

1 + |Df |2 =|Ψ′|+O(ǫ)

(gij − f if j

1 + |Df |2 ) =σab +O(ǫ).

Moreover, the distance function d to the boundary of Ω satisfies

σabdadb = 0 and σabDaDbd = HΣ.

Hence, we conclude that

Q(f) =
Ψ′

|Ψ′|HΣ + trΣp+O(ǫ)

As a result, sub and super solutions exist when HΣ > |trΣp|. One can then use Perron
method to find the solution between the sub and super solution. �

Remark 2. Here we proved the result when the dimension of Ω is 3. The result holds in
higher dimension as well.



10 PO-NING CHEN, MU-TAO WANG, AND SHING-TUNG YAU

3.3. Proof of Theorem 2.

Proof. It suffices to show that, for τ close to τ0, τ is admissible with respect to Στ0 in R
3,1

if Hτ0 is spacelike.
For such a τ , the Gauss curvature of σ + dτ ⊗ dτ is close to that of σ + dτ0 ⊗ dτ0. In

particular, it remains positive. This verifies the first condition for admissibility.
We apply Theorem 4 in the case where Σ bounds a spacelike hypersurface Ω in R

3,1

and gij and pij be the induced metric and second fundamental form on Ω, respectively.
Moreover, the projection of Σ onto the orthogonal complement of T0 is convex since the
Gauss curvature of σ + dτ ⊗ dτ is positive.

That the mean curvature of Σ is spacelike implies that |HΣ| > |trΣp|. Moreover, that the

projection Σ̂ is convex implies HΣ > 0. It follows that HΣ > |trΣp|. We recall there is no
marginally trapped surface in R

3,1 (see for example, [3]). As a result, Jang’s equation with
the Dirichlet boundary data τ is solvable as long as Σ = ∂Ω has spacelike mean curvature
vector. This verifies the second condition for admissibility.

To verify the last condition, it suffices to check for τ0 since it is an open condition.
Namely, it suffices to prove that

h(Σ,Xτ0 , τ0, e
′
3) > 0.

Lemma 4 in the appendix implies that the generalized mean curvature h(Σ,Xτ0 , τ0, e
′
3)

is the same as the generalized mean curvature h(Σ,Xτ0 , τ0, ĕ3(Στ0)) where ĕ3(Στ0) is the

vector field on Στ0 obtained by parallel translation of the outward unit normal of Σ̂τ0 along
T0. The last condition for τ0 now follows from Proposition 3.1 of [8], which states that for
ĕ3(Στ0),

h(Σ,Xτ0 , τ0, ĕ3(Στ0)) =
Ĥ√

1 + |∇τ0|2
> 0.

�

4. Global minimum in the axially symmetric case

In proving Theorem 3, we need three Lemmas concerning a spacelike 2-surface Στ in
R
3,1 with time function τ . First we introduce a new energy functional which depends on a

physical gauge.

Definition 3. Let Σ be closed embedded spacelike 2-surface in spacetime N with induced
metric σ. Let e3 be a spacelike normal vector field along Σ in N . For any f such that the
isometric embedding of σ into R

3,1 with time function f exists, we define

(4.1) Ẽ(Σ, e3, f) =

∫

Σ̂f

ĤfdvΣ̂f
−
∫

Σ
h(Σ, i, f, e3)dvΣ

where h(Σ, i, f, e3) is the generalized mean curvature (see Definition 2).

This functional is less nonlinear than E(Σ, f). Provided the mean curvature vector H

of Σ is spacelike, the following relation holds

E(Σ, f) = Ẽ(Σ, ecan3 (f), f)



QUASI-LOCAL ENERGY 11

where ecan3 (f) is chosen such that

〈H, ecan4 (f)〉 = −∆f

|H|
√

1 + |∇f |2

In addition, the first variation of Ẽ(Σ, e3, f) with respect to f can be computed as in
[8]:

(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇af√
1 + |∇f |2

+ divσ(
〈H, e3〉∇f√
1 + |∇f |2

) + divσαe3 .

where ĥab and Ĥ are the second fundamental form and mean curvature of Σ̂f , respectively.
We recall that for Στ , assuming the projection onto the orthonormal complement of T0

is an embedded surface, there is a unique outward normal spacelike unit vector field ĕ3(Στ )
which is orthogonal to T0. Indeed, ĕ3(Στ ) can be obtained by parallel translating the unit

outward normal vector of Σ̂τ , ν̂, along T0.

Lemma 1. For a spacelike 2-surface Στ in R
3,1 with time function τ , f = τ is a critical

point of the functional Ẽ(Στ , ĕ3(Στ ), f).

Proof. The first variation of Ẽ(Στ , ĕ3(Στ ), f) at f = τ is

(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
h∇τ√

1 + |∇τ |2
) + divσα.

where h = 〈Hτ , ĕ3(Στ )〉 and α = αĕ3(Στ ) are data on Στ with respect to the gauge ĕ3(Στ )

and ĥab and Ĥ are the second fundamental form and mean curvature of Σ̂τ . Denote the
covariant derivative on Σ̂ with respect to the induced metric σ̂ by ∇̂. We wish to show
that the first variation is 0.

Recall from [8], we have

Ĥ = −h− α(∇τ)

1 + |∇τ |2 .

Moreover, we have the following relation between metric and covariant derivative of Στ

and Σ̂τ :

σ̂ab = σab − τaτ b

1 + |∇τ |2 , σ̂ab∇̂aτ =
τ b

1 + |∇τ |2 , and ∇̂a∇̂bτ =
∇a∇bτ

1 + |∇τ |2 .
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In addition, for a tangent vector field W a, ∇̂aW
a = ∇aW

a + (∇b∇cτ)τcW b

1+|∇τ |2
. As a result,

(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

= ∇̂b[(Ĥσ̂ab − σ̂acσ̂bdĥcd)
√

1 + |∇τ |2∇̂aτ ]− (Ĥσ̂ab − σ̂acσ̂bdĥcd)(∇̂aτ)(∇̂b

√
1 + |∇τ |2)

= ∇b[(Ĥσ̂ab − σ̂acσ̂bdĥcd)
√

1 + |∇τ |2∇̂aτ ] +
τ e(∇b∇eτ)

1 + |∇τ |2 (Ĥσ̂ab − σ̂acσ̂bdĥcd)
√

1 + |∇τ |2∇̂aτ

− (Ĥσ̂ab − σ̂acσ̂bdĥcd)∇̂aτ
τ e∇b∇eτ√
1 + |∇τ |2

= ∇b[(Ĥσ̂ab − σ̂acσ̂bdĥcd)
√

1 + |∇τ |2∇̂aτ ].

Hence,

(Ĥσ̂ab − σ̂acσ̂bdĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divΣ(
h∇τ√

1 + |∇τ |2
) + divσα

= ∇b[(Ĥσ̂ab − σ̂acσ̂bdĥcd)
√

1 + |∇τ |2∇̂aτ +
hτ b√

1 + |∇τ |2
+ αb]

= ∇b[−σ̂acσ̂bdĥcd
√

1 + |∇τ |2∇̂aτ − τ b

1 + |∇τ |2α(∇τ) + αb]

= ∇b[
−σ̂bdĥcdτ

c

√
1 + |∇τ |2

− τ b

1 + |∇τ |2α(∇τ) + αb].

On the other hand, by definition,

αa =
1√

1 + |∇τ |2
〈∇ ∂

∂xa
ν̂, T0 +∇τ〉 = ĥacτ

c

√
1 + |∇τ |2

.

Hence,

− τ b

1 + |∇τ |2α(∇τ) + αb =
σabĥacτ

c

√
1 + |∇τ |2

− τ b

1 + |∇τ |2
ĥacτ

aτ c√
1 + |∇τ |2

=
σ̂abĥacτ

c

√
1 + |∇τ |2

.

This shows that
−σ̂bdĥcdτ

c

√
1 + |∇τ |2

− τ b

1 + |∇τ |2α(∇τ) + αb = 0

and completes the proof of the lemma. �

Lemma 2. Let Xsτ , 0 ≤ s ≤ 1 be a family of isometric embeddings of σ into R
3,1 with time

function sτ . Suppose Σ0, the image of X0, lies in a totally geodesic Euclidean 3-space, E3,
and Σsτ , the image of Xsτ , projects to an embedded surface in E3 for 0 ≤ s ≤ 1. Assume
further that Σ0 is mean convex and H2

0 ≥ 〈Hsτ ,Hsτ 〉 for 0 ≤ s ≤ 1. Regarding Σ0 as a
physical surface in the spacetime R

3,1, then

E(Σ0, τ) ≥ 0.
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Proof. Instead of proving admissibility of τ , we will use variation of the quasi-local energy
and the point-wise inequality of the mean curvatures.

Hence, we consider

F (s) = E(Σ0, sτ)

for 0 ≤ s ≤ 1. F (0) = 0 and we shall prove that F (1) is non-negative by deriving a
differential inequality for F (s).

Let

G(s) =

∫

Σ̂sτ

ĤsτdvΣ̂sτ
.

For any 0 ≤ s0 ≤ 1, G(s) is related to Ẽ(Σs0τ , ĕ3(Σs0τ ), sτ) by
(4.2)

G(s) = Ẽ(Σs0τ , ĕ3(Σs0τ ), sτ)+

∫

Σs0τ

(
−〈Hs0τ , ĕ3(Σs0τ )〉

√
1 + |∇sτ |2 − αĕ3(Σs0τ

)(∇sτ)
)
dvΣs0τ

.

As a consequence of Lemma 1, we have

∂

∂s
Ẽ(Σs0τ , ĕ3(Σs0τ ), sτ)

∣∣∣
s=s0

= 0.

By equation (4.2),

G′(s0) =

∫

Σs0τ

(
−〈Hs0τ , ĕ3(Σs0τ )〉s0|∇τ |2√

1 + s20|∇τ |2
− αĕ3(Σs0τ

)(∇τ)

)
dvΣs0τ

=
G(s0)

s0
− 1

s0

∫

Σs0τ

1√
1 + s20|∇τ |2

√
〈Hs0τ ,Hs0τ 〉+

(s0∆τ)2

1 + |s0∇τ |2 dvΣs0τ
.

Recall that by the definition of quasi-local energy:

F (s) = G(s)−
∫

Σ0

(√
(1 + |s∇τ |2)H2

0 + (s∆τ)2 − s∆τ sinh−1(
s∆τ

H0

√
1 + |s∇τ |2

)

)
dvΣ0

.

We write the integrand of the last integral as

√
1 + s2|∇τ |2

(√
H2

0 +
(s∆τ)2

1 + |s∇τ |2 − (s∆τ)√
1 + |s∇τ |2

sinh−1(
s∆τ

H0

√
1 + |s∇τ |2

)

)
.

Differentiate this expression with respect to the variable s, we obtain
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s|∇τ |2√
1 + s2|∇τ |2

(√
H2

0 +
(s∆τ)2

1 + |s∇τ |2 − (s∆τ)√
1 + |s∇τ |2

sinh−1(
s∆τ

H0

√
1 + |s∇τ |2

)

)

−
√

1 + s2|∇τ |2
[

s∆τ

(1 + |s∇τ |2)3/2 sinh−1(
s∆τ

H0

√
1 + |s∇τ |2

)

]

=
1

s

[√
(1 + |s∇τ |2)H0

2 + (s∆τ)2 − s∆τ sinh−1(
s∆τ

H0

√
1 + |s∇τ |2

)

]

− 1

s

1√
1 + s2|∇τ |2

√
H2

0 +
(s∆τ)2

1 + |s∇τ |2 .

Since the induced metrics on Σs0τ and Σ0 are the same, we can evaluate all integrals on
the surface Σ0. This leads to

F ′(s) =
F (s)

s
+

1

s

∫

Σ0




√
H2

0 + (s∆τ)2

1+|s∇τ |2 −
√

〈Hsτ ,Hsτ 〉+ (s∆τ)2

1+|s∇τ |2√
1 + s2|∇τ |2


 dvΣ0

.

The assumption H2
0 ≥ 〈Hsτ ,Hsτ 〉 implies the last term is non-negative and thus

F ′(s) ≥ F (s)

s
.

As F (0) = F ′(0) = 0, the positivity of F (s) follows from a simple comparison result for
ordinary differential equation. �

The last lemma specializes to axially symmetric metrics.

Lemma 3. Suppose the isometric embedding X0 of an axially symmetric metric σ =
P 2dθ2 +Q2 sin2 θdφ2 into R

3 is given by the coordinates (u sinφ, u cos φ, v) where P , Q, u,
and v are functions of θ. Let τ = τ(θ) be an axially symmetric function and Xτ be the
isometric embedding of σ in R

3,1 with time function τ . The following identity holds for the
mean curvature vector Hτ of Στ in R

3,1.

〈Hτ ,Hτ 〉 = H2
0 − (vθ∆τ − τθ∆v)2

v2θ + τ2θ

where ∆ is the Laplace operator of σ.

Proof. The isometric embedding for an axially symmetric metric is reduced to solving ordi-
nary differential equations. The isometric embedding of σ into R3 is given by (u sin φ, u cosφ, v)
where

u2 = Q2 sin2 θ and v2θ + u2θ = P 2.

The isometric embedding of the metric σ + dτ ⊗ dτ into R
3 is given by (u sinφ, u cos φ, ṽ)

where
ṽ2θ + u2θ = P 2 + τ2θ .
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Thus,

ṽθ =
√

v2θ + τ2θ .

Differentiating one more time with respect to θ,

ṽθθ =
vθvθθ + τθτθθ√

v2θ + τ2θ

,

and therefore

∆ṽ =
1√

v2θ + τ2θ

(vθ∆v + τθ∆τ).

For the mean curvature, we have

H2
0 =(∆(u sinφ))2 + (∆(u cos φ))2 + (∆v)2, and

〈Hτ ,Hτ 〉 =(∆(u sinφ))2 + (∆(u cos φ))2 + (∆ṽ)2 − (∆τ)2.

Taking the difference and completing square, we obtain

H2
0 − 〈Hτ ,Hτ 〉 =(∆v)2 + (∆τ)2 − (∆ṽ)2

=
1

v2θ + τ2θ
[vθ∆τ − τθ∆v]2.

�

Let’s recall the statement of Theorem 3.

Theorem 3 Let Σ satisfy Assumption 1. Suppose that the induced metric σ of Σ is axially
symmetric with positive Gauss curvature, τ = 0 is a solution to the optimal embedding
equation for Σ in N , and

H0 > |H| > 0.

Then for any axially symmetric time function τ such that σ + dτ ⊗ dτ has positive Gauss
curvature,

E(Σ, τ) ≥ E(Σ, 0).

Moreover, equality holds if and only if τ is a constant .

Proof. By Theorem 1, it suffices to show that E(Σ0, τ) ≥ 0. First, we show that for any
0 ≤ s ≤ 1, the isometric embedding with time function sτ exists. Recall the Gaussian
curvature for the metric σ + dτ ⊗ dτ is

1

1 + |∇τ |2
[
K + (1 + |∇τ |2)−1det(∇2τ)

]

whereK is the Gaussian curvature for the metric σ. SinceK andK+(1+|∇τ |2)−1det(∇2τ)
are both positive, we conclude that σ + d(sτ)⊗ d(sτ) has positive Gaussian curvature for
all 0 ≤ s ≤ 1. By Lemma 3, we have H2

0 ≥ 〈Hsτ ,Hsτ 〉. The theorem now follows from
Lemma 2. �
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Appendix A. Proof of Lemma 4

Here we present the proof of Lemma 4 used in the proof of Theorem 2. Since the lemma
is a general statement for any time function τ0, we use τ instead of τ0.

Lemma 4. For a surface Στ in R
3,1 which bounds a spacelike hypersurface Ω, let f be the

solution of Jang’s equation on Ω with boundary value τ . Then

h(Σ,Xτ , τ, e
′
3) = h(Σ,Xτ , τ, ĕ3(Στ ))

Proof. It suffices to show that e′3 = ĕ3(Στ ). For simplicity, denote ĕ3(Στ ) by ĕ3 in this
proof.

Let Ω̂ and Σ̂ denote the projection of Ω and its boundary, Στ , to the complement of T0.

Let ∇̂ be the covriant derivative on Σ̂ and D̂ be the covariant derivative on Ω̂. Let ∇ be
the covriant derivative on Σ.

Write Ω as the graph over Ω̂ of the function f . f can be viewed as a function on Ω as
well. f is precisely the solution to Jang’s equation on Ω with Dirichlet boundary data τ .

We choose an orthonormal frame {êa} for T Σ̂. Let ê3 be the outward normal of Σ̂ in Ω̂.
{êa, ê3, T0} forms an orthonormal frame of the tangent space of R3,1. The frame is extend
along T0 direction by parallel translation to a frame of the tangent space of R3,1 on Σ.

Let {e3, e4} denote the frame of the normal bundle of Σ such that e3 is the unit outward
normal of Σ in Ω and e4 is the furture directed unit normal of Ω in R

3,1. In terms of the
frame {êa, ê3, T0},

e3 =
1√

1− |D̂f |2



√

1− |∇̂τ |2ê3 +
ê3(f)√
1− |∇̂τ |2

(T0 + ∇̂τ)




e4 =
1√

1− |D̂f |2
(T0 + D̂f)

(A.1)

Let {e′3, e′4} denote the frame determined by Jang’s equation. By Definition 5.1 of [8], it is
chosen such that

〈e3, e′4〉 =
−e3(f)√
1 + |∇τ |2

Using equation (A.1),

〈e3, e′4〉 =
−e3(f)√
1 + |∇τ |2

=
−ê3(f)

√
1 + |∇τ |2

√
1− |D̂f |2

√
1− |∇̂τ |2

As a result,

〈e3, e′4〉 =
−ê3(f)√
1− |D̂f |2

since (1− |∇̂τ |2)(1 + |∇τ |2) = 1.
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On the other hand, the frame {ĕ3, ĕ4} is the frame of normal bundle such that ĕ3 = ê3.
In terms of the frame {êa, ê3, T0},

ĕ4 =
T0 + ∇̂τ√
1− |∇̂τ |2

Using equation (A.1),

〈e3, ĕ4〉 =
1√

1− |∇̂τ |2


 ê3(f)(−1 + |∇̂τ |2)√

1− |D̂f |2
√

1− |∇̂τ |2


 =

−ê3(f)√
1− |D̂f |2

As a result,
〈e3, ĕ4〉 = 〈e3, e′4〉

Hence, {e′3, e′4} and {ĕ3, ĕ4} are the same frame for the normal bundle of Σ �

References

[1] L. Andersson, M. Eichmair, and J. Metzger, Jang’s equation and its applications to marginally trapped

surfaces Complex analysis and dynamical systems IV. Part 2, 13–45.
[2] P.-N. Chen, M.-T. Wang, and S.-T. Yau, Evaluating quasilocal energy and solving optimal embedding

equation at null infinity. Comm. Math. Phys. 308 (2011), no. 3, 845–863.
[3] M. Khuri, Note on the nonexistence of generalized apparent horizons in Minkowski space. Classical

Quantum Gravity 26 (2009), no. 7, 078001,
[4] P. Miao, L.-F. Tam, and N.Q. Xie, Critical points of Wang-Yau quasi-local energy. Ann. Henri Poincaré.
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