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ABSTRACT

Proving A Manifold To Be Hyperbolic Once It Has
Been Approximated To Be So
Harriet Handel Moser

Let M be a 3-manifold whose boundary consists of tori. The computer pro-
gram SnapPea [19], created by Jeff Weeks, can approximate whether or not M
is a complete hyperbolic manifold. However, until now, there has been no way
to determine from this approximation if M is truly hyperbolic and complete.
This paper provides two methods for proving that a manifold is complete hy-
perbolic based on the approximations of SNAP [7], a program that includes
the functionality of SnapPea plus other features. The approximation is done
by triangulating M, identifying consistency and completeness equations as de-
scribed by Neumann and Zagier [13], and Benedetti and Petronio [3] with re-
spect to this triangulation, and then trying to solve the system of equations us-
ing Newton’s Method [20]. This produces an approximate, not actual solution.
Assume the triangulation has n tetrahedra. There are n relevant equations,
filz1s.ooyzn) = 0,00, fu(21, ..., 2,) = 0, in n variables. Let ay,...,a, be an
approximate solution to the equations. Define b; = f;(a1,...,a,) for 1 <i<mn
and f : C" — C" such that f(z1,...,2n) = (fi(21,-- -, 2n)y - s fu(Z1,- - 20)),
so flai,...,an) = (b1,...,by) € C" is very close to (0,...,0) € C". The

first method applies the concepts inherent in the proof of the Inverse Func-



tion Theorem|[21] to see if there is a neighborhood of (a1,...,a,) € C" that f
maps homeomorphically onto a neighborhood of (by,...,b,) € C" that contains
(0,...,0). If so, there is a solution to the equations and we have guaranteed
that M is complete hyperbolic [3]. The second method applies the Kantorovich
Theorem [8] to f with the same goal of testing for a solution to the equa-
tions. Using these methods, every manifold in the SnapPea cusped census is

definitively proven to have a complete hyperbolic structure.
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Figure 1: The Tetrahedron o;
1 Introduction

Since the determination that M is complete hyperbolic is dependent on there being a
solution to a set of equations, we shall first review the development of these equations.
Every orientable complete hyperbolic manifold of finite volume is obtained from an
ideally triangulated one by Dehn surgery on some of its cusps. This fact is documented
by Neumann [13], based on a Thurston preprint [16], so we first examine N, a non-
compact 3-manifold that is the interior of a compact one whose boundary consists of &
tori. N can be realized as a gluing of n tetrahedra, o4, ..., 0,, having k vertices after
gluing, with a conic neighborhood of each vertex removed [3]. A conic neighborhood
of the vertex, v, is described as follows. Let v be a vertex and o; a tetrahedron that
v belongs to. Take the second barycentric subdivision of the edges of o; containing v
and let wy, wy and w3 be the closest vertices to v for these edges with respect to this

subdivision. See Figure 1.

Definition 1.1 o L, (v) = triangle having vertices w;, wy and w3 as above

with respect to v and o



[ ] L(V) - vaertexofaj Lo']‘ (U)

1<j<n

L(v) is called the link of v
o U, (v) = tetrahedron having vertices v, wy, wy and ws
e conic neighborhood of v = (J, erexoro; Uy, (V).
1<j<n

Every vertex is identified with a cusp of N, and its link is a torus. These truncated
tetrahedra resulting from the removal of the conic sections can now be treated as ideal
hyperbolic tetrahedra, so there exists a hyperbolic structure on N\1-skeleton of N.
In order for N to have a hyperbolic structure, there must be consistency across the 1-
skeleton. The conditions for this to happen are embodied in the consistency equations
and will be described in detail in Section 2, “Identifying the Equations”.

Completeness applies to the cusps. Once a hyperbolic structure is identified, it
induces a similarity structure (i.e., a (C, Aff(C)) structure) on each of the £ tori,
Ty, ..., Ty. If the similarity structure of a torus identified with a cusp is Euclidean,
N will be complete at that cusp [3]. This occurs when the image of the holonomy of
the similarity structure for the torus consists entirely of translations, or equivalently,
has at least one non-trivial translation [3]. A holonomy of a similarity structure for
a torus, T, is a map € such that 6 : 7, (T") — Aff(C) [3]. The conditions for the image
of 6 to consist entirely of translations are presented by the completeness equations
which will also be discussed in Section 2, “Identifying The Equations”.

Once we establish the conditions for cusps of N to be complete, we turn our
attention to the manifold M, obtained from N by Dehn surgery on some of the

cusps. Assume h cusps remain unsurgered, so there are k — h surgered cusps. M



must satisfy the consistency equations; however, there are now only h cusps that
must be shown to be complete, so we only need the completeness equations referring
to these h cusps. The remaining k£ — h surgered cusps must result from Dehn surgery
with co-prime coefficients (p;, ¢;) for 1 < i < k — h where (p;, ¢;) and the holonomy
of the similarity structure of 7; are joined in one equation [3].

Once the equations needed to prove a manifold complete hyperbolic are identified,
we set up the machinery to test whether a solution exists. There are two types of tests,
and they occur in Section 3, “How to Test for a Solution.” The method described
there concludes the proof of the following theorem, which is our main result, where

the first inequality is established in Section 3.1 and the second in Section 3.2.

Theorem 1.2 Let M be a manifold and assume there are n tetrahedra in the triangu-
lation of M according to SnapPea. There are n equations, {fi(z) = 0| f; : C* — C}
for 1 < 1 < n, whose simultaneous solution will guarantee that M is complete hy-
perbolic. If SnapPea finds an approximate geometric solution to these equations, let
a = (ay,...,a,) be an approrimate geometric solution generated by SNAP on the
SnapPea manifold file for M. Let b; = fi(a) for 1 < i < n and f : C* — C" with
f(z) = (fi(2),..., fu(2)), so f(a) = b = (b1,...,b,). Then there are identifiable
0,m and L > 0 such that there is a genuine solution to the equations, making M

complete hyperbolic when at least one of the following inequalities are true:

1o
1) |b —
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We devote the final section to examples. Every manifold in the cusped census of
SnapPea has been examined and the results are reported in Section 4, “Examples.”
However, for detailed discussion, six examples are presented. There are simple ones,
such as the figure 8 knot and Whitehead link complements, as well as Dehn surgery
on both of them. There are also two complicated link complements, one with 4 cusps
and 32 tetrahedra and the other with 11 cusps and 57 tetrahedra. In uncomplicated
cases, it is sometimes possible to show that a knot or link complement has a complete
hyperbolic structure using means other than the SnapPea approximation. Thurston
has proven that the figure 8 knot complement has a complete hyperbolic structure, and
shown when a (p, ¢) Dehn filling has the same property [18]. Neumann and Reid have
done the same for Dehn fillings of the Whitehead link [12]. However, when it comes
to complicated knots and links, until now, it may have been impossible to definitively
determine whether this structure exists. For several years Leininger has withheld
publication of his paper devoted to the links in the last two examples [9] because he
could not prove that their complements have a complete hyperbolic structure. The
paper can now be released using the method presented here. So far, every manifold
that has an approximate solution with respect to a geometric triangulation in SnapPea
that has been tested by this method has been verified to have a complete hyperbolic

structure.
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Figure 2: Edge e of the Tetrahedron o;
2 Identifying the Equations

Let o; be an ideal hyperbolic tetrahedron as described in Section 1, “Introduction”,
and pick an edge e such that w; € e and prior to truncation, e ended in the vertex v,
as in Figure 2. Then L,, (v), the triangle with vertices wi, ws and w; naturally has a
similarity structure as the triangle in C with vertices 0, 1 and z (see Figure 3) [17, 13,
3], and the dihedral angle at e will be arg(z). Clearly, z must be in C, , the upper half
plane in C. The modulus of L,,;(v) with respect to wy is z, so that the inner angle of
the triangle at w; is arg(z). The modulus of o; at edge e is z. The only other modulii
at the other edges of o; will be either 1 — (1/z) or 1/(1 — z), so z uniquely describes
o; in the upper half plane. There are six edges with opposite edges having the same

modulus [13, 3, 15]. See Figure 4.

2.1 Consistency Equations

In order for N to be hyperbolic, if e is an edge of N, the tetrahedra gluing together at

e must close up around e. That is, the product of all the edge modulii associated with

21

e (different modulus for each tetrahedron e belongs to) must be ¢*™, assuring that the



Figure 3: The Triangle Similar to Lo, (v)

Figure 4: Modulii Associated To Edges of the Tetrahedron o;



sum of the arguments is precisely 2. Any of the three distinct edge modulii of a tetra-
hedron, o;, can expressed as :i:z;j (1—2;)" with (r5, 7)€ {(1,0), (—1,1),(0, ~1)}, so

the gluing requirement at edge e is
n !
[I20—2)7 =1,
j=1
where r; = 7 = 0if 0; does not contain e. A tetrahedron can have more than one edge
glued at e so 7 and 7 can take values between —2 and 2. The Euler characteristic

of N is zero, so it can be shown that N has n edges [13]. Thus, the n edge equations

can be expressed as

3

Z9(1—z) b =+1  (i=1,...,n). (1)
7=1

They are referred to as the consistency equations. The existence of a solution is
sufficient to make N hyperbolic. We rewrite them as log equations because they are
easier to use this way and it reflects the fact that the sum of the arguments of the

modulii at each edge is exactly 27 [11].

n

Z(r;j log(z;) + ri;log(1 — zj)) = eimi ¢ €L (i=1,...,n) (2)

7=1
Let R, C and R be the following matrices.

! ! n n
’I“H P Tln ’I“H .« .. /rln *Cl
R = ; N oo
! T, ,',,/I ,rll *Cn

Tnl nn nl - nn

Proposition 2.1 If rank R = p, then the space of solutions to the consistency equa-

tions can be defined by exactly p consistency equations.



Proof. Let rank R = p < n, so, without loss of generality, we can assume the first

p rows of R are linearly independent. For s > p, there exist A\ € Cfor1 <1 <p

such that
P
—Z% T —ZAf o= New
i=1
Assume we have a solution z = (21, ..., 2,) to the first p consistency equations. Then
> (rilog(z) + rilog(1 — 2)) —emi=0  (i=1,...,p).
j=1
Thus,
P n
Z )‘ZS(Z(T;J log(z;) + ry; log(1 — z;)) — ¢imi) = 0.
i=1 j=1
Hence,
n p p
> (2 Al log(z;) + (3 X)) log(1 — ) - Z Neg)mi = 0.
j=1 =1 i=1

This is the same as

> (rl;log(z;) + 1l log(1 — 2;)) — e,mi = 0.

j=1
Therefore, the last n — p consistency equations are determined by the first p, so we
only need the first p equations to determine hyperbolicity. [ |

In [13, 3] it is proven that for a complete hyperbolic manifold, rank R = n —

k. However, we need to prove hyperbolicity. Neumann’s work in Combinatorics of
Triangulations and the Chern-Simons Invariant for Hyperbolic 3-Manifolds [11] tells
us, without a priori knowledge of hyperbolicity, that rank R = n — k, and C is
determined by R, so rank R = n — k. This will be explained in Section 2.3, “Matrix
Rank”. Then, by the above proposition, we only need n — k consistency equations to

determine hyperbolicity.



Figure 5: Simple Simplicial Loop, v, on Torus 7;

2.2 Cusp Conditions

We now look at the k£ cusps of N. Details of the following discussion can be found
in [3]. Let T} be the torus associated with the ™" cusp. Select 2 simple oriented
loops, m; and [;, on T;, representing the 2 generators of the fundamental group of 7;.
Furthermore, m; and [; can be chosen as simplicial loops with respect to T;’s triangu-
lation. Such a loop is composed of segments where each segment is an edge of some
triangle L, (v) C L(v) = T;, as identified earlier when describing the triangulation
of N. Let v be any simple simplicial oriented loop on 7; consisting of d segments,
S1,...,5q, and d vertices, wy, ..., wy, where w, is the vertex at the end of s, as well
as at the beginning of s, 11 for 1 <r < d—1 and wy is the vertex at the end of s; and
beginning of s;. See Figure 5. We lift v to C = R?, the universal cover of T}, starting
at the beginning of s; and map it to C by way of the developing map [15, 18]. The
resulting curve will consist of d straight segments, s1,..., 54, joined at the vertices
w, for 1 < r < d-—1, as in 7y, except at wy, which does not necessarily connect to

the beginning of ;. So it starts at the beginning of §; and ends at the end of s,.
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Figure 6: Developing Map Image of

Repeat the development map process, starting at the end of 55 and let s'; be the
first segment this time, so 1, is the vertex between 54 and s';. See Figure 6. Call
this curve 4. Aff(C) can be regarded as C x C* with (a,b) € C x C* such that it
represents a + bz, an affine map of C. The dilation component of (a,b) is b. Thus, if
an oriented triangle in C has two edges ¢; and é; where €, ends in the vertex z, and €,
begins at , and the modulus of the triangle with respect to z is y, then the one and
only orientation preserving similarity of C that takes €; to é; has dilation component
equal to —y. Remember, the modulus of the triangle with respect to z is defined so
that ¢, is identified with the edge from 0 to 1 and éy with the edge from 0 to y in
the triangle with vertices (0,1,y). If z,q,..., 2., are the vertices of the p, triangles,
Ly, (v),..., Ly, (v), that touch v at w,, as in Figure 5, we get p, corresponding trian-

’ Orpy

gles, Ly, (v),..., L,,, (v), touching ¥ at 1, with #,1,...,7,,, the respective vertices
of these triangles at @,. The ordering is such that 3, is the first edge of L, , (v), and
Sr41 is the second edge of iaw (v), at w, unless r = d, and then s'1 is the second edge

of f/,,dpd (v). See Figure 6. If the corresponding triangle modulii at w, are y,1, ..., Yrp,,
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then the dilation component of the affine map that takes s, to §,,, is — Hf;l Ypi- Ori-

“_»

entation is responsible for the in the product. Hence, the affine map that takes
5 to s, has dilation component of [[%_,(=1) [T, i = (=D T1%_, [T, yri- Note
that the modulus of L, (v) at Z,; for 1 < i < p, is the same as the modulus of L, . (v)
at x,; for 1 < ¢ < p,, and this latter modulus has already been identified as either
zj, 1/(1 = z;) or 1 — 1/z; for some 1 < j < n. Therefore, the dilation component of

the affine map that takes s, to 5 is of the form

%
+1]] 71
j=1
The holonomy of the (C, Aff(C)) structure on T; is a map 0 : m(T;) — Aff(C) such
that if [v] is the element of m(T;) represented by the loop =, then 6 takes [v] to
the affine map that takes s7 to 5~’1 This is a homomorphism that is well defined

up to conjugacy class within Aff(C). However, any two elements of Aff(C) within a

conjugacy class have the same dilation component [3], so the map

v -m(T;) — C such that
- +1 H (1 — 2;)"
is a well defined homomorphism. 6([7]) will be a translation if its dilation component
is 1, so O([]) will be a translation when v;([v]) = 1.

We now look at loops m; and [;. For simplicity of notation, we also refer to the

corresponding generators of m;(7;) as m; and [; so

Wi(m;) = ilH (1 )™ (3)

i(li) = ﬂH b1 - )t (4)
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If the triangulation of 7; causes m; to be a simplicial loop with d segments and d
vertices, then its holonomy will be a non-trivial translation when ;(m;) = 1 and the
sum of the arguments of the modulii at the d vertices of m; is dr [3]. Rewriting in

log form, these requirements are expressed as

Z(m;] log(z;) +mj;log(1 — z;)) = ¢ with ¢,,; € Z.
j=1

Similarly, one can identify the log equation which sets the condition for the holonomy

of [; to be a non-trivial translation. It can be expressed as

n

Z(lgj log(z;) + I3 log(1 — 25)) = cymi with ¢; € Z.

7=1
When the holonomy of the affine structure on 7; has at least one non-trivial translation
in its image, the affine structure is Euclidean [3]. But a Euclidean structure on T;
means that the 4" cusp is complete [3], so the completeness equations for all of the &

Cusps are

n

Z(mij log(z;) + m;'J log(1 — zj)) — ¢mimi =0 (i=1,...,k). (5)

j=1

Now consider a hyperbolic manifold, N, with k& cusps where h of the cusps are
complete, so the above completeness equations hold only for K — h+1 <i < k. Let
T; be a torus associated with one of the £ — h non-complete cusps. If p; and ¢; are
co-prime integers, (p;, ¢;) Dehn filling can be performed on this cusp. In the literature,
this process is frequently referred to as Dehn surgery, but it is really a filling. In this
case, p;m; + q;l; is the generator of m (7;) that is killed by Dehn filling. In order to

extend the hyperbolic structure on N to the Dehn filling at this cusp, we need [13, 3]

n

pi ( > (mijlog(z;) + my;log(1 — 2;)) — cmmi> +

J=1
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n

ai( D (1 1og(z) + 1 og(1 — 2,)) — eumi) = 2mi. (6)

j=1
That is

n

pimt; + qili ) log(z:) + (piml; + qil!) log(1 — z5) | = cymi with ¢, € Z.
%] 1) J 1) 1) 7
j:l

Therefore, if the equations

n

3 ((pim;j-l-qil;j)log(zj)-l—(pim;;—kqil;'j)log(l—zj)> —cgmi (i=1,....,k—h) (7)

7=1
are satisfied, M, the manifold derived from N by Dehn filling on the k — h cusps, will
be hyperbolic near these cusps.
The last step in identifying the equations is the selection of the appropriate n — k

consistency equations. Let si; = pym;; + ¢;l;; and sj; = pym}; + ¢;li;, and define the

R

matrices M, L, S and My, as R is defined on page 7 so that

! ! n "
mhy, ... omy, mf, ... mf,
M =
! ! n n
! ! " "
(R S (A
L= : : : ) :
! ! n n
iyt lgn  Lin iy
! ! n n
511 . Sln 511 A Sln
S — ) )
! ! n n
Stk—h)1  Stk—h)n Sk—h)1  Stk—h)n
ml ml m/l m/l
(k—h+1)1 (k—h+1)n  "k—ht1)1 (k—h+1)n
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Let

o ()

We will see that rank U = k. We can select n — k consistency equations so that their
rows in R are linearly independent, and when concatenated with U, give an n x (2n)
matrix of rank n. The reasons for this are a consequence of [11], and will be explained
in Section 2.3, “Matrix Rank”. We will assume, without loss of generality, that the
last n — k out of n consistency equations are the ones we want.

In summary, we have

n — k consistency equations,

n

S (! log(z;) + 1l log(1 = 7)) —cimi =0 (i=k+1,...,n),

J=1
k — h surgery equations,

n

Z ((plm;] + qil;j) log(z;) + (plm;'] + qll;']) log(1 — z])) —cqmi=0 (i=1,....,k—h),
=1

and h completeness equations,
> (il log(z) +mllog(1 — 2)) — caumi =0 (i=k—h+1,... k).
j=1

giving a total of n equations that must have a simultaneous solution to make a

manifold complete hyperbolic.

2.3 DMatrix Rank

In [11], Neumann has constructed a chain complex, 7, and described its homology.

I

Using the terminology of Section 1, “Introduction,” with respect to the triangulation
of N and M, let K be the gluing of the n tetrahedra, o, ...,0,. The modules of the

chain complex are Cy, C and .J, where
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1. Cy = Z module generated by the k vertices of K. Each vertex will be associated

with a cusp of N, and the torus that is the link of the vertex.
2. Cy = Z module generated by E,..., E,, the n edges of K.

3. With regard to J, for each tetrahedron, o;, label the edges as €;1,...,¢e;6 ac-

cording to the associated parameters as:

€ji1 =2 €j2 = €j3:1—

—
e
N

1
i
ejo =13

€j4 €j5

—

—
Let J,, = Z module generated by the six edges of o; with the relations e;, —
ejtr43) = 0 for 1 <7 < 3 and ej; + €52 + ¢j3 = 0. Thus, opposite edges of the
tetrahedron are represented by the same element of J,,, and e;3 can be defined
in terms of e;; and e;. This means that e;; and ej» generate the Z module,

J,.. Let
7

T=11 7,

1<j<n

The chain complex sequence is
J 0-)00&01&,]&010—300—)0.
We have «, 3, o and §* defined as follows:

1. a: Cy — Cy, where a takes a vertex to the sum of the edges containing the

vertex, with an edge counted twice if both ends of the edge are at the vertex.

2. B :Cy — J can be defined by letting

Ei — Z Z €ir

1<5<n 1<7<6
E; isidentified with €jr
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We have the sum ) 1<-<6 ejr € J,, because more than one edge of o

E; isidentified with e -

can be identified with E;.

3. To define 5* : J — Cj, note that for each o}, we have the edge set {e;1,..., €6}
Let p : {ej1,...,ej6} = {E1,...,E,} be such that p(e;;) = E; when e;, is
identified with the edge FE;. Then, let

B*(ejr) = plejire1)) — plejir+2) + plejir4a) — plejir45)  (indices mod 6)

That is, 5* takes ej; to the alternating sum of the edges of N identified with

the edges of o; that touch ej,.
4. o* : C7 — Cy, where o* sends an edge, E;, to the sum of its end points.

N is the interior of a compact manifold, N, whose boundary is the union of the k

tori, T4, ...,T}, that are the links of the vertices of K.

Lemma 2.2 When tensored with Q, the sequence, [J, is exact except in the middle,
where its homology is H,(ON;Q) = [Licicr Hi(T3; Q).
For a proof, see [11]. We use this to compute the rank of R. However, we will use

the original chain with coefficients in Z to show that the rank of the matrix obtained

by concatenating U, as defined on page 14, with n — k linearly independent rows of
R, is n.
2.3.1 Rank of R

The matrix of the linear transformation, 3, is closely related to R!, the transpose of

R, and they have the same rank. Since rank R = rank R!, rank R = rank of the
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matrix of 5. The edges Fy, ..., E, are a basis of (; as a vector space, so the vectors
B(E;) for 1 < i < n are the columns of the matrix of f. From the definition of /3, we

see that in J,_,

B(E;) = Z ejr modulo relations on .J. (8)

1<7<6
E; isidentified with €jr

Thus, if:

ej1 oI ej4 occur, it means E; is identified with the z; parameter

ej2 Or €5 occur, it means Fj; is identified with the ﬁ parameter
7

ej3 O €j¢ occur, it means F; is identified with the 1 — ZL parameter.
J

1—2; .
In J,,, ej3 = —ej1 — €j9; also, 1 — Zi = ——. Hence, the sum of the coefficients of
] 7

€41 in 6(E’L) is 7/

i;» the sum of the exponents of z; with respect to the edge E; in the

consistency equations, and the sum of the coefficients of ejy in S(E;) is —r;;, which

is —1 times the sum of the exponents of 1 — z; with respect to the edge E; in the

consistency equations, as seen on page 7. Consequently, R, the 2n x n matrix of 3 is

! !
7"11 “ e T

nl

" "

T T

R =
/ /

T Ce Tnn

" "
_Tln e _Tnn

We see that rank R = rank R!, so rank R = rank R. By definition, the rank of R
is equal to the dimension of the image of 8. By Lemma 2.2, « is injective, making
dimim(«) = dimCy = k, and im(«) = ker(5). The matrix of § this way would still

be R, so

rankR = dimim(p)

= dim ) — dimkernel(/)
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= dimC; — dimim(«)

= n—k

Therefore, rankR = n — k. Let R, C and R be the matrices associated with the
consistency equations, as on page 7. Consider the matrix equation R -z = —C.
In [11] it is proved that there is an Z € Q*" that is a solution. Then —C is a linear
combination of the columns of R, so R concatenated with —C has the same rank as

R since row rank is the same as column rank. That is,

n —k = rankR = column rank R = column rank (R|-C)

= column rank (R|C) = column rank R = rank R,

sorank R = n— k. Let R s = matrix consisting of n — k linearly independent rows of

2.3.2 Rank of (S|Mj|Rp)

For now we will include all k cusps of N. Let S;(ON) = Z module of simplicial 1-
chains, Z;(ON) = Z module of 1-cycles and By (ON) = Z module of 1-boundaries. Let
ejr € Jy; for 7 =1,2. If the two vertices at the ends of e;; in 0; are v;1 and vj9, let
Cjr1 and (jro be the respective edges of Ly, (vjr1) and Ly, (vjr2) that do not intersect
ejr. Do the same for e;;13), so we have four 1-simplices identified in IN. They are

Cir1s Cir2, Cir+3y1 and Cj(r43)2, with one for each vertex of o;. Now define 4.

’A}/[] : J{Tj — Sl(ﬁﬁ)

€ir = Cir1 + Gira + Cirga)1 + Cir43)2
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We have, by [11],

Yo : im(8) — B (ON)

A : ker(8*) — Z(ON)
so there is the induced map

5t ker(8%) /im(B) — Hi(0N) = [ Hi(T.

1<i<k

Next, let oo : H,(ON) — J be defined as follows. Let I' be a simple simplicial loop
on the torus, 7Tj, associated with the i cusp of N. In figure 5, v is such a loop.
Each vertex, w,, of v, is the vertex of p, triangles L,, (v),...,L,, (v) where T; is
the link of v, a vertex of K. Define the simple cellular path T', by starting at the
midpoint of the edge of L,,, (v) that ends in w; but is not s;. Continue across the
{Ls,,(v) }2<q<p,—1 by crossing from one triangle to another at the midpoint of the
edges that have w; as a vertex, ending at the edge of L,,, (v) that is not s;. Then
continue across Ly, (v) = L,y (v) to the edge of Ly, (v) that has wy as a vertex
but is not sy. Repeat the process until the loop is closed by going from the edge
of Ly, (v) = Lg,, (v) that contains wg but is not s; to the starting point. When r
crosses Ly, (v) for 2 < ¢ < p, —1, it goes counterclockwise around the vertex w,, as a
vertex of L, (v), and when it crosses L,,, (v) = Ly, (v), it goes clockwise around
the vertex of this triangle that is opposite to s,,1. When one of these vertices belongs
to the triangle L, (v), the vertex is associated with an edge, e,,,, of o,, for some
1 <7 <6, as defined at the beginning of Section 2.3, “Matrix Rank”, and this edge
is an element of J,  C J. To each of these edges assign a “+” if T’ goes around its

“w_»

corresponding vertex counterclockwise, and a if I' goes around its corresponding
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vertex clockwise. T is homotopic to T, so we can define & : Z;(9N) — J such that

~

00(T') = do(I") is the signed sum of these edges in .J. That is,
(@)= D (~D'err (9)

where t = 0 when e,,, is assigned a “+” and ¢t = 1 when e,,, is assigned a “—". In
Jorqs Ergr = €rq(r+3) for 1 < 7 < 3 with the last subscript mod 6, and e,q1+e,0+€,43 =
0, 80 —€gr = €rq(r4+1) T Erq(r4+2) With the last two subscripts mod 6. Therefore, when

€rqr 15 assigned a “—7, we substitute e,q(r41) + €rq(r+2) With both subscripts mod 6.

Hence,

(T = 3 en (10)
1<r<d
1<q<pr

where e,,, is an edge of o0,, that is associated with w,, a vertex of L,,Tq(v) and w,

is a vertex of the simple simplicial loop I' in 7T;. The relations of J also mean that
€rg3 = €rg6 = —€rql — €rg2, SO
0T = D dren+giep (11)

_1<j<n
T crosses ng (v)

where, with respect to o, g;f is the number of occurrences of the z; parameter minus
the number of occurrences of the 1—2% parameter and g;’F is the number of occurrences
of the ﬁ parameter minus the number of occurrences of the 1 — i parameter in
Equation 10.

Now let m; and [; for 1 < ¢ < k be the meridianal and longitudinal simple simpli-
cial loops on T}, as in Section 2.2, “Cusp Conditions”. We get corresponding m; and [,

constructed as I' was, where m; and [; are homologous to 7; and [;, respectively. So

m; and [; are the generators of H(7;) and their image under 5o are two columns of
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ML, the matrix of dg. These two columns are of the form

— / " / n : / / " "
Im; = (leia Jim;s s Gnim s Qnm—) with Gim; — My and Gim; — My
- ! " ' " . ' no__qn
9, = (gljl.a 9121-’ s agnia gnL) with gﬂi - lij and gﬂi - lij
where mj;, m;; and [};, [i; are the components of the matrices M and L from “Cusp

Conditions” on page 13. Let ML be M concatenated with L. For each generator
of H(ON) = [Ti<ick H1(T5), there is a column in the matrix of 0o, so ML has 2k
columns and 2n rows, where the (25 — 1) row of ML is equal to the j column
of ML and the 25 row of ML is (—1) times the (n + j) column of ML. Thus,
rank ML = rank ML’ = rank ML. The next step is to show that rank ML = 2k. We
have im(dy) C ker(53*), with dy(B;(dN)) C im(8), so there is the induced map

0 : Hi(ON) — ker(8")/im(3)

Now 46 : H,(dN) — H;(ON) is multiplication by 2 [11], so §, must be injective.
Consequently, the matrix of dy has maximal rank, which is 2k, making the 2k vectors,
{Gms» Gi; }1<i<k, linearly independent.

M is derived from N by the Dehn filling of £ — h cusps of N with filling coefficients

of (pi, i) for 1 <i <k —h. Let gy, = piGm, + qigi, for 1 <i <k —h.
Lemma 2.3 The k4 h vectors

— — — — — —
{9517 st 7gsk—h7 gmk,h+17 st 7gmk: glk,h+17 st ngk}

are linearly independent.

Proof. Assume otherwise. Then there exists ¢ ; for 1 <7 <k — h and &,,; and ¢,
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for Kk — h+1 <1i <k such that

1<i<k—h k—h+1<i<k

= Z Gsi(DiGm; + ¢iGi;) + Z (EmiGm,; + 1ig;)

1<i<k—h k—h+1<i<k

= Z PsiDiGm,; + Z $si¢iGi; + Z (EmiGm,; + P1ig;)

1<i<k—h 1<i<k—h k—h+1<i<k

We have just seen that {g,, g, }1<i<k, is linearly independent, so &,,; = ¢;; = 0 for
kE—h+1<i<kand ¢gp; = ¢sq; =0 for 1 <1 < k — h. But at least one of p; or ¢;
is not 0, so ¢; =0 for 1 <¢ <k —h. |

Since rank R = n — k, select n — k linearly independent vectors in im(3) that are
columns of the matrix R, and denote them by gg, for £k +1 < i < n. Observe that
im(dp) Nim(B3) = {0}, because otherwise, there is a non-trivial z € Hy(dN) such that
A0do(x) = Fo(element of im(B)) € By (IN). Then 46(x) = 0 € H,(ON). But 44 is

multiplication by 2 on H,(ON), so 2 = 0, which is a contradiction.

Lemma 2.4 Let

1) S = the 2n x (k — h) matriz whose columns are the vectors s, for 1 <i <k —h
2) My, = the 2n x h matriz whose columns are the linearly independent vectors G, ,
fork —h+1<i<k

8) Ry = the 2n x (n — k) matriz whose columns are the linearly independent vectors
gs,, fork+1<i<mn

Concatenate these matrices to get the 2n X n matriz F = (S|My|R3). RankF = n.

Proof. Assume otherwise. Then the vectors that are the columns of F are not

linearly independent, so there are &; for 1 < ¢ < k—h, @ fork—h+1 <i <k and
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¢pi for k+1 <@ < n, where not all are zero, such that

1<i<k—h k—h+1<i<k k+1<i<n
Therefore,
0 = %/(0)
= ’AY0< Z gsigsi + Z (Pmlg)ml + Z ¢6i§}3i>
1<i<k—h k—h+1<i<k k+1<i<n
= &0( gsigsi + Z (Pmlg)ml) + ;}/0( Z ¢ﬁi§5i>
1<i<k—h k—h+1<i<k k+1<i<n
= %[ 0( Z Eilpimi; + qili) + Z gomimiﬂ + 4o (element in im(f))
1<i<k—h k—h+1<i<k

But 4o (im(3)) C Bi(IN), so 75(213@#;1 Ei(pimi + qil;) 2 ko hr1<i<h (Pmimi) = 0.
Therefore, > ;o p &si(pim; + qﬂi) + Zk7h+1<i<k ©mim; = 0 since &5 is injective.

Hence,
0 = do(0)

— 50( Z Eai(pii + qili) + Z QOMimi)

1<i<k—h k—h+1<i<k

— Z Ei00 (P + qil;) + Z Pumi0o (777;)

1<i<k—h k—h+1<i<k

- Z gsigsi + Z mezgmz

1<i<k—h k—h+1<i<k
By Lemma 2.3, &; for 1 < i < k—h and ¢,,; for k —h+1 <1 < k are all zero.

Then, Equation 12 becomes 0 = ", |, #3:Gs,. However, the gy, for k+1<i<n
were selected to be linearly independent, so ¢g; = 0 for k +1 <7 < n. This is a

contradiction. [

Corollary 2.5 Each column of Ry has a corresponding row in R, the matriz asso-

ctated with the consistency equations. Let Rg be the matriz comprised of only these
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n — k rows of R and let

Then rankF = n.

Proof. As before, every (2 — 1) row of F is equal to the j" column of F and

every 25 row of F is (-1) times the (n + 5) column of F. Thus,
rank F = rank F! = rankF = n

That is, rank F = n. |
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3 How to Test for a Solution

Let
fiz1, .0 2) = Z <(pzm;] + qili;) log(z;) + (pimy; + qily;) log(1 — z])>
7=1
P, (i=1,....k —h)
filz1, .oy 2n) = Z( ilog(z;) +mj;log(1 — zj)) — epimi
7=1
Gi=k—h+1,... k)
filz1, .. 2,) = Z(r;j log(z;) + ri;log(1 — z;)) — c;mi
7=1
(i=k+1,...,n)
and let
f:C¢ = C such that
2= (21, .2) = f(2) = (fi(2),..., ful(2)).
Then let
ti; = pimg; + qili; = pimi; + @l 6 = cy (i=1,...,k—h)
! !/ n __ " n __ i —
= o G =k hrLo
ij = Tij ij = Tij i — G t= .

The resulting components of f are

filer,oooz) = Y (tlog(z) +thlog(1 — 2))) —tl'mi (i=1,...,n).  (13)
j=1
Then %:zilt’i for 1 <i<mn, so
]
0f(z) _ (tlﬂ_ Mt tlﬂ_i> (14)
82]' Zj 1*2]'7.”72]‘ ]_*Zj '
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Since we are only working with manifolds where SnapPea finds an approximate solu-
tion to f in C}, the upper half plane in C", there is an a € C} such that f(a) = b and b
is extremely close to 0 € C*. We begin with the method that uses many of the con-
structs in the proof of the Inverse Function Theorem, as presented in [21], and
find that these quantities are used again by the Kantorovich method. Each of these
methods provides a sufficient condition for a manifold to have a complete hyperbolic
structure. Consequently, a manifold may not satisfy either condition and still be
complete hyperbolic. However, if it satisfies at least one we know it has a complete

hyperbolic structure.

3.1 Inverse Function Theorem

The Inverse Function Theorem states that there exists U’, a neighborhood of a, that
is mapped homeomorphically by f onto V, a neighborhood of b if the determinant
of f'(a), the derivative of f at a, is not zero. It is our aim to describe V because
if 0 € V and U" C C7, there is a solution to f(z) = 0 in C} that gives a complete
hyperbolic structure on the manifold. Let H = C}. H is open in C". Each f; is
holomorphic on H, so f is holomorphic on H [14]. Thus f is smooth on H, with the

differential of f at z, df(z), being the linear map

df(z) : C* — C"

v = f(2) v,

[21]. We know that detf’(a) # 0 [4], so rank f'(a) =

where f'(z) = <8£iz(]fz)>l<ij<n

n and f is regular at a. Since |df(z)(v)/|, as a function of v, is a continuous function

on C", it will attain a maximum and minimum on the compact set {v € C" : |v| = 1}.
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Thus, for any point z € H, we can define

|df (2)|ine = infly= |df (2) (V)]

We will be interested in calculating the value of |df (a)linr, however now we introduce
n= %. The open ball of radius r about z in C", {w € C" : |w — 2| < r}, will

be denoted by B,(z). Whitney [21] proves that:
e |df(a)|ims > 0.

e There exists a 6 > 0 such that if 2/, 2" € Bs(a) then |f(2') — f(2")| > n|z' — 2"],
so that f is 1-1 on Bj(a). This is done by letting ¢ = W and selecting

d > 0 such that |%§2 — %@\ < € for 1 < j < n whenever |z — a|] < 4. This
7 7

of(2)
0z;

can be done since the partial derivatives, for 1 < 5 < n, are continuous

functions of z on H.

e When we take 6 small enough, Bs(a) C H, and the rank of f'(z) for z € Bs(a)
is n. If U = Bs(a) and V' = Bys (b), then V' C f(U).

Therefore, if 0 € Vand U = U N f~Y(V), there is a unique z € U’ such that
f(2) = 0. This 2 is a solution of the surgery, completeness and consistency equations.

Consequently, we need [b] < 2, so it remains to calculate |df (a)|inr and d.

3.1.1 Calculate |df(a)|ins

We know that detf’(a) # 0, so f'(a)~" exists. Let

B={f'(a)-v:|v|=1}={weC":|f(a) ' w =1}
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We look at the continuous real valued function g on the compact set B such that

uw:B — R
w — |w|’
Let S = {v € C" : |v| = 1}. Then p attains a minimum at some @ € B and the

function |df (a)| will attain a minimum at some ¢ € S where w = df (a)(v) = f'(a) - 0.

Now let A = f’(a)~'. This is a complex matrix, so

Awl> = (Aw)'(Aw) A = conjugate of A and ¢ = transpose of A
= (w'A"(Aw)
= w'(A'A)w.
Let D = (A'A). This is a self adjoint matrix so it has real eigenvalues [6]. Then,
B = {w:|Aw| =1}
= {w:|Aw|* =1}

= {w:w'Dw=1}.

Using the Lagrange multiplier method to minimize g = |w|* on B [6], let

H(wy,...,wp,\) = |w]* = Aw"Dw —1)
= 3w 2 (w3 1)
i=1 i=1 j=1
In order to find a critical point for H, all partials with respect to wy,...,w, and A

must be 0. We set

OH ~ .
0= awz :U}Z—)\(]Zldmwj) (Z:L...,n),
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S0,

0 = w—ADw

= (I-\D)w
1

Then Dw = %, making % an eigenvalue of D. Also,
oOH
(D)

= w'Dw — 1.

0 =

Thus, w'Dw = 1, and substituting £ for Dw from above, we have w'¥ = 1. That
is, w'w = A. But w'w = |w]?, so minjw|? = minX such that § is an eigenvalue of D.

From this we see that on B,

1

maximum eigenvalue of D

min|w|* =
= smallest eigenvalue of D' [5]

= smallest eigenvalue of (A*A) !

= smallest eigenvalue of f'(a)f'(a)".

By definition, |df (a)|ins = ming,g|w]|, so

|df (a)|inf = \/smallest eigenvalue of f'(a)f'(a)’. (15)

The result is that we calculate the eigenvalues of f’(a)f’(a)’ using its characteristic

polynomial and then take the square root of the smallest one to get |df (a)|ins. We

can now set 1 = %.
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3.1.2 Calculate §

Since the partial derivatives iaaf—z(’_z) for 1 < j < n are continuous functions of z on H,
J

there exists a 0; > 0 such that |% — %Z(fl” < € when |z — a| < ¢, for each j. Let
7 7

§ = min;(d,), so that for all j, 652) - 85( ) |z —a| < 9. Thus, we must

identify these ¢; for 1 <7 <mn.

0f(2) _ 9f(a)

_ [(9/i(z)  Ofi(a) 0fu(z)  0fula)
6zj 8Zj - ‘ < 8zj B 62]- o 8Zj B 8zj ) ‘ (16)
0fi(z)  0fi(a)
= — ‘ 0z, a 0z I (17)

If there exists a d; such that when |z — a| < J; we have |%§l — %ﬁ“ < £ for all
] 7

1 <t < n, we can set 6 = min;J; and our conditions are satisfied. From page 25,

0fi(z) 9fila) _ ﬁi tis (tlﬂ tij )
1 a;

@;

0z; 0z; ; 1 -z
) B ( ty )
1— Zj 1— CL]'

<
- () ()
<”f )
(]‘]Z] i (1 (CZJ)_(lzj) %)

= (aj—zj)( t%j + i ) (18)

From this we see that we need only concern ourselves when both #;; and #}; are not

Ofi(z) _ Ofi(a) _
"0z 0z; = 0.

Let M = min(|a;|,|1 — a;]) and ¢, (M Im(a;)). We note that a € H so

zero, because otherwise

Im(a;) > 0and 1 —a; # 0, so 0; > 0. By restricting 6; to be less than or equal to
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Im(a;), we guarantee solutions only in H. Then §; < %d, SO
laj| —6; > % > 0. (19)
Thus,
a]|1— 0; : a—ij (20)
Similarly, ¢; < \1;2@;17 SO
11— a;| 5j>% >0, (21)
giving
1—ai—5j§%' (22)

Let 2 € Bj,(a), so that |z; —a;| < ¢;. In Equation 18 there are two quantities to
Consider:i_”—_ and —tJ—
a; z; (1—a;)(1—2)

th.

1. =
a;zj
la;| — |z;| < |z; — a;| < 9§, so that |z;| > |a;| — &;. However, |a;| —6; > 0,
whereby
1 1
—_< (23)
2| lag| —9;
Hence, by Equations 23 and 20, we have
‘ t;j ‘ |t;j‘ |t;j|
ajz; | Ja|(laj] = 6;) 7 |a,| 1!
That is,
o s
Y | ”a|_ i (24)
ajzit ag 5




.

T—a;| —[1—2] < [(1-2)-(1~-a)

so that

1 —a;] =6 < |1 —z].

But |1 —a;| — §; > 0, so that

1
< .
‘12’3‘ |1—aj|—6j

Combining with Equation 22, we get

Hence,

i ;]

‘(1aj)(1zj) |1_aj|“;_“ﬂ'

Going back to Equations 18, 24 and 27, we conclude:

11351

i1

20
6zj 8Zj ‘ < J

215 11— a;? 215

Let

. t
+25j% - 25]-[ yl

11— ay]?

|

; . € 1 M . ;
6] = min <— [ﬁ] s ?, Im(a])> and (5] == mlnlsl’gnéj.

2n

laj|? T

[1—a;[?

Then, for |z — a| < §;,

‘afi(z) B 8fi(a)‘ <9t 1 1t ]
SR S e AT A

J + J
la; 2 T—a;[?

32

(26)

(27)

(29)
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That is, for |z — a| < §;, we have

01(2) Ofila)| _ e

0z, 0z, n

In conclusion, let ¢ = minj<;<,(d;). Using the values of 1 and ¢ just calculated, the

test for a solution to the equations, as presented on page 27, means checking if

b < T

This completes the first part of the proof of Theorem 1.2.

3.2 Kantorovich

The Kantorovich Theorem [8] provides a test for the solution of f. The relevance of
this theorem to the solution of f was brought to our attention by Joan Birman after
the Inverse Function Theorem test of Section 3.1 had been developed. We thank her
for telling us about it. The Kantorovich Theorem is usable in our situation because

we can identify the quantities used. This is not the case for all functions.

Theorem 3.1 (Kantorovich) Let U be an open neighborhood of a point, a, in
C* and f : U — C" a holomorphic mapping with invertible derivative f'(a) at a.

Let hh = —f'(a) "' f(a), @ = a+ hh and Uy = By (a). If Uy C U and

1. The derivative f'(z) satisfies the Lipschitz Condition on Uy, with Lipschitz Ra-

tio, L

2. |f (@)l f'(a) 'L < 3,
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then f(z) =0 has a unique solution in U.

The Kantorovich Theorem applied to our function, f, works as follows. Let U = H.
Given a, an approximate solution to f(z) = 0, apply Newton’s method to f at a to
get an even better approximate solution, a. That is, let hh = — f'(a)"" - f(a) and a =
a+hh = (a1+hhy, ..., ap+hh,) so a; = aj+hh;. Then see if a Lipschitz Ratio, denoted
by L, can be identified for 2 € By, (a) so that f’(z) satisfies the Lipschitz condition on

Up with L. One way to do this is to find an upper bound, ¢;;;, on the second partials,

0:0,40(2)]| for 1< i, j.k < nfor 2 € Bu(@), and let L = /3, ;e (cige)? (8.
This works for us, but in general, the major stumbling block to using this theorem is
the difficulty in finding this L. Here, |f'(a)~"|, the norm of f'(a)~!, can be either the
supremum norm, which we will denote by |f'(a) !|sup, or the length norm, referred

to as | f'(a) " "|ien, where

|£'(a) " sup = suppyy—y | f'(a) " - ]

and if a component of f'(a) "' is denoted by h;;,

£'(a) ™ ien = Z hij|2.
1<i,j<n
Now substitute values in the inequality found in the second part of the Kantorovich
Theorem and see if they pass the test. If so, there is a solution in By, (a). The
cijr are found by methods similar to those used in the calculation of the (5;-, and the
calculation of the supremum norm is almost identical to that of |df (a)|i.s. In fact, the

supremum norm can be expressed in terms of |df (a)]ins-
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3.2.1 Calculate |f'(a)'|

Supremum Norm:|f'(a) !|s,, Follow the work in Section 3.1.1, only this time we
are interested in f'(a)~! instead of f'(a). Thus, let Ax, Dg and By be defined

as follows:

Ag = (f'(@)™) " = f'(a), Dx = Al Ak = ['(a)'f'(a) and
B ={f'(a) - v:pw|=1}={weC" :|f'(a) w| =1}.

Then,

1

smallest eigenvalue of Dy
1

smallest eigenvalue of A% Ax
1

smallest eigenvalue of f/(a)tf'(a)

maXe g, |w|* =

By definition, | f'(a) ! |sup = maxenp, |w|, so

1

[£'(@) sup = (30)

\/smallest eigenvalue of f’(a)!f'(a)
Two matrices that are conjugate to each other have the same eigenvalues, so
f'(a)'f'(a) and f'(a)f'(a)' have the same eigenvalues. The relation between

the Inverse Function Theorem and Kantorovich methods is seen now, since the

definition of 1 on page 29 means that

|fl(a‘)71‘sup - % (31)

Length Norm:|f'(a) '|ien Let the components of f'(a) ' be (hij)i<ij<n. Then

(@) e = [ D Ihigl® (32)

1<i,j<n
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Figure 7: Disc of radius |hh;| about @

3.2.2 Calculate c;j;

Let 2 € Bjpp (a). Then |z —al < |hh|, so |z; —a;| < |hh|, where z; —a; = z; — (a;+hh;)
since a; = a;+hh;. Figure 7 shows the situation for each j. There are three tests that
need to be performed before we test for the inequality in the Kantorovich Theorem.
The entire process stops and Kantorovich tells us nothing about a manifold when any

of these tests fail.

Test 1 We want a solution in H, so we require that Im(3;) > |hh|. Otherwise,
there are z € Bjyy(a) that have Im(z;) < 0, and the solution could be one of

these z.
Test 2

(2j = a;) — hhj| = |z — (a; + hh;)| = |2; — a;| < [hh].
Using triangle inequalities,
2 — a;| — |hh;| < [(z; — a;) — hhy].

Therefore,|z; —a;|—|hh;| < |hh|, giving |z; —a;| < |hh;|+|hh|. But |hh;| < |hh|,
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S0 |z; — a;| < 2|hh|. Now
2j| = laj + (25 — a;)| > |aj| — |(z; — aj)|.

Thus,
12| > |aj| — 2|hh]. (33)

We need |a;| — 2|hh| > 0 in order to define L, so the second test is to see if

lhh| < 3|a;|. Then,
1 1
— < . (34)
5 < Tag 2

Test 3 We do a similar process as in the previous test. We already know that

|z; — aj| < 2|hh|. Only now, we use 1 — z; instead of z;, so
1=zl =1 —a; (5 —a))| > |1 — 5] — (2 — a5)].

Hence,

11— z;| > |1 —aj| — 2|hh|. (35)

We need |1 —a;| — 2|hh| > 0; a third test is to check that hh| < 7|1 — a;].

Then,
1 < 1
1—2z |1—a;|—2|hh|

(36)
Remainder of Calculation

We are now ready to look at the second partials. By page 25 we see that for

z € By (a),

87;]- Z]‘ 1-— Zj
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Therefore,
Ok0;fi(z) = 0 for k # j (37)
. "
= -2 ___ Y for k = j. (38)
7 (1—z)?
Consequently,
0,0, < Lol o Nl
2 1= 2]

Combining this with Equations 34 and 36 yields

|t’~| |tl‘"‘
0;0;fi(2)] < - - . »
10;0;fi(2)] < (laj| = 2|hh))? (11 — a;| — 2|hh|)? )

Using this, ¢;j, for 1 <14, 7,k < n is defined as

Cijk = 0 for ] 7£ k (40)
th. .
Cijj — ‘ 2]| > | 2]| 5. (41)
(s —2I0RD” (11— a;] — 2/A])
The Lipschitz Ratio, L, can now be identified as
L = > (ey)?
1<2,7<n
|t:| |t | 2
b (o e @
1<§<n (laj| —2lhh[)* (11 — a;| — 2|hh])?

The theorem can finally be applied, testing to see if |f(a)||f'(a)'|?L < 3. Since

b= f(a), this can be rewritten as

1
| < ——————.
ORI
We really have two tests, one using the supremum norm and the other using the

length norm. This completes the last part of the proof of Theorem 1.2.
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4 Examples

The methods presented are implemented by the use of two programs: SNAP to get
information about the manifold and Pari-Gp [2] to do calculations. We use Pari-Gp
instead of Mathematica because of its high level of precision. Page 41 begins the
template for a program that is written in an edit file and then copied into Pari-
Gp for execution. The template needs to be adjusted for information gotten from
SNAP. Assume we have a manifold file in SNAP for the manifold, M. Once SNAP
is open, read in the file for processing. The “pr sol” command will print the type of
solution SNAP has found. A geometric solution means that the solution is in H. Any
other response is useless here, so there is no need to go any further. Assuming it is
geometric, proceed with setting up the template. Issue the “pr sh” command. SNAP
will return the transpose of a vector representing an approximate solution to our set
of n equations for M. The number of components of the vector will be equal to n,
the number of tetrahedra in the triangulation. Then copy this vector from SNAP to
the template, replacing [a4, ..., a,], so that a now has the value of our approximate
solution. The tilde at the end of the Snap response must be eliminated so that a
appears as a 1 x n matrix. Next comes the “pr fill” command. SNAP will display a
(n+ k) x (2n 4+ 1) matrix where the components of each row are the coefficients of a
cusp or consistency equation. Assuming M is the result of Dehn filling on A out of k£
cusps, the first £ — h rows represent the cusp surgery equations, the next h rows are
the meridian completeness equations for the unsurgered cusps, and the last n rows
are all the consistency equations before any have been eliminated. If all cusps are
unsurgered, h = k, so the first k£ rows are all meridianal completeness equations. This

command to print filling equations is closely related to the “pr gI” command which
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prints the gluing equations. This latter display presents the k& meridianal followed by
the k longitudinal completeness equations for the original k£ cusps before any surgery,
and then all of the n consistency equations. But it is simpler to use the filling
equations, even for manifolds where no surgery has been done. Copy this matrix
from Snap to the template, initializing the matrix F'G. The script will then create
the matrices F' and GG, where F' consists of the first £ rows of F'G and GG consists
of the last n rows of F'G. The rows of F' are linearly independent and the program
selects n — k rows from G so that when added to F| the resulting matrix has rank n.

The only further adjustments may be Pari-Gp punctuation to reflect line contin-
uation. In order to tell Pari-Gp to ignore an end of line from the text editor, a “\”
followed immediately by Return must end that text line. This is needed with a large
vector or matrix, so it will probably be needed once the values for a, F' and G are

copied into the template.
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4.1 Template

/* set precision to 60 (or higher for very large manifolds) from the default of */
\p 60
/* read the file FILENAME into SNAP */
/* see that there are h unsurgered cusps */
/*G) GGG/
/* print shapes - the triangulation has n tetrahedra */
/* enter the shapes as a vector, so it is regarded as a 1 X n matrix */
a=
lay, ..., a;]
/* find n, the number of tetrahedra */
n = matsize(a)[2]
/* print filling equations and use this to initialize the matrix FG. The first £k — h \
equations are cusp surgery equations, followed by the h meridianal completeness \
equations, and finally all of the n consistency equations. */
FG =
(211, - y L1(2n+1)5 - - -5 L(n+k)ly - - - ;«T(n+k)(2n+1)]
/* find n + k, the number of equations derived from the Snap command ”pr fill” */
numalleq = matsize(FG)[1]
/* find total number of cusps, k */
k = numalleq - n
/* initialize F, the cusp equations matrix, using the first k£ equations from FG */
F = matrix(k,2*(n) +1,ii,jj,FGiijj])

/* initialize G, the matrix of all consistency equations, using the last n equations)\



from FG */
G = matrix(n,2*(n) +1,ii,jj, FG[k+ii,jj])
/* define matrix H by eliminating the last column of F' representing the mi \
coefficient */
H = matrix (k,2*n,i,j,F[i,j])
/* define matrix K by eliminating the last column of G representing the i \
coefficient */
K = matrix (n,2*n,i,j,G[i,j])
/* redefine F' and H by adding rows to them from G and K respectively \
until the rank of F' and H are both n */
r=1
V() = ((2*n)+1LG[])
t(r) = vector( 2*n,LK[r,1] )
while( n — matrank(H) && (n+1—r), if( (matrank(concat(F,v(r))) \
— matrank(F)) && (matrank(concat(H,t(r))) — matrank(H)), \
(F = concat(F,v(r))) && (H = concat(H,t(r))), r=r+1))
eval(F)
eval(H)
/* set up the filling equations as log functions evaluated at a */
f(i) = sum(j = 1, n, Flijl¥log(ai) ) + (j = 1, n, Flin+i*log(1-afi)) ) \
+ F[i,(2%n)+1]*Pi*1
/* define the vector b in C* */
b = vector( n, i, f(i) )

/* identify the norm of b */

42
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normb = sqrt( norml2(b) )

/* identify A, the derivative matrix for f at a */
i) = ( Flijl/alil ) — ( Flin-ti)/(1-af]) )

A = matrix( n, n, i, j, g(i,j) )

/* check that determinant of A is not zero */

matdet(A)

/* INVERSE FUNCTION THEOREM PROCESSING */

/* find eigenvalues for D = (conjugate of A) x (transpose of A) */

D = conj(A)*mattranspose(A)

wapprox = polroots( charpoly(D,x) )

w = real( wapprox )

/* define Eta = (square root of smallest eigenvalue of D)/2 */

Eta = sqrt ( vecmin( w ) )/2

/* define Eps = ((square root of smallest eigenvalue of D) — Eta)/n */

Eps = ( sqrt( vecmin( w ) ) — Eta )/n

/* Identify DELTA */

/* If not both F[i, j| and F[i, j + n] are equal to zero, select delta(i, j) according\
to instructions. If both equal zero, then we get zero as the denominator; however\
any arbitrarily large delta will work for this i and j, so select \
delta(i,j)=((4*normb) /Eta) + 1 */

delta(i,j) = if( abs(F[i,j])+abs(F[i,j+n]),( Eps/(2n) ) \

* (1/( (abs(F[i])/ (abs(ali}))2) + (abs(Flin-+])/ (abs(1—ali]))"2) ) ).\
((4*normb) /Eta)+1 )



vecdelta(j) = vector( n, i, delta(i,j) )
mindelta(j) = vecmin( vecdelta(j) )
vecmind elta(j) = [mindelta(j),imag(a[j]),(norml2(a[j]))/2,(norml2(1—alj]))/2]
mmindelta(j) = vecmin(vecmindelta(j) )
VECDELTA = vector( n, j, mmindelta(j) )
DELTA = vecmin( VECDELTA )
/* find the value that the norm of b must be less than */
(Eta*DELTA) /4
/* compare norm of b to above */
normb < ( (Eta*DELTA)/4 )
/* KANTOROVICH PROCESSING */
/* change b into a matrix to do matrix multiplication */
B = matrix(n,1,j,i,b[j])
/* define the vector hh and find its length, normhh */
bhh = —(A)"(~1)*(B)
hh = vector(n, j, hhhlj,1])
normhh = sqrt(norml2(hh))
/* perform the first three tests to see if this method is applicable */
atilde = a 4+ hh
/* test 1 to see if fat solution; if j > n */
for (j = 1, n, if(normhh < imag(atildelj]), , \
error(”failure at atilde[”, j, ”]")))
/* test 2 to see if ¢;;; can be defined */

for(j = 1, n, if(normhh < (1/2)*abs(alj]), , \

44
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error(”failure at atilde[”, j, ”]")))
/* test 3; other test to see if ¢;;; can be defined */
for(j = 1, n, if(normhh < (1/2)*abs(1 — a[j]), , \
error(”failure at atilde[”, j, ”]")))
/* identify the Lipschitz ratio, Lips */
c(i) = (abs(FI])/ (abs(ali]) — 2*normhh)~2) \
+ (abs(F[i,j+n])/(abs(1—a[j]) — 2*normhh)~2)
Lips = sqrt( sum( j = 1, n, sum(i = 1, n, ¢(i,j)"2) ) )
/* identify normAinv, the norm of A~(—1), using the definition of matrix \
norm as the supremum of A~(—1)v for v on the n-sphere */
normAinv = 1/( 2 * Eta )
/* do the Kantorovich tests */
/* find the value that the norm of b must be less than or equal to with respect \
to the supremum norm */
1/(2 * (normAinv)~2 * Lips)
normb <= 1/(2 * (normAinv)~2 * Lips)
/* find the length norm and the value that the norm of b must be less than)
or equal to with respect to the length norm */
sqrt(norml2(A~(—1)))
1/(2 * norml2(A~(—1)) * Lips)

normb <= 1/(2 * norml2(A~(—1)) * Lips) [
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4.2 Using the Template

The template is ready to be used. If you want a copy of what has happened, first turn
the log on in Pari-Gp by typing “\l logfilename”. Then copy the adjusted template
to Pari-Gp, wait for the run to complete, and open the log file to see the results.
Make sure that there are no error messages from the qualification tests described.
If there are, any further results are of no value. If there are no error messages, a
response of “1” to at least the Inverse Function Theorem or either of the Kantorovich
inequalities will indicate the manifold is complete hyperbolic. A copy of the template
can be found at [10]. We now look at six examples. Each example will have two sets
of data. The first comes from SNAP and the second is the result of calculations in
Pari-Gp. The vectors and matrices are printed as they appear in SNAP. When one of
them extends beyond one line, it is edited once copied into the template to add the
line continuation character, “\,” after each line before its end. The Pari-Gp data has
been shortened to 40 decimal places from the calculated precision of 60 decimal places
so as to fit on one line since in these examples, it has no effect on understanding the

results.

1. FIGURE 8 KNOT COMPLEMENT

The simplest is the figure 8 knot complement. We know [18] that this is complete
hyperbolic already. However, only sufficiency conditions have been presented
here, so it is nice to see that a manifold we know to be complete hyperbolic

does not fail the test.

QUANTITIES FROM SNAP

n—=2



[0.50000000000000000000000000004-0.8660254037844386467637231707*1,
0.5000000000000000000000000000+0.8660254037844386467637231707*1]
F=[1,0,0,1, 0]

G=[2,-1,-1,2,0;-2, 1,1, -2, 0]

Pari-Gp CALCULATIONS
|b] = 1.296666384352891444530724934775173278518 F — 28

Inverse Function Theorem data:

n = 0.3140257650798779229370147391728000202907

e = 0.1570128825399389614685073695864000101453

0 = 0.01308440687832824678904228079766698232949

%5 = 0.001027210220145861215835361282642896699237

Kantorovich data:

L = 4.472135954999579392818347339211785668123
|f'(a) " sup = 1.592226038754547070932399593119376104348
|f'(a) " ien = 1.632993161855452065464856049716587347937

W = (0.04410070808503045666350407221846082500302

sup

W = 0.04192627457812105680767200627679720162466

. (3,2) DEHN SURGERY: FIGURE 8 KNOT COMPLEMENT
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Dehn surgery on the figure 8 knot complement with coefficients outside the

rectangle with vertices (—4, 1), (—4, 1), (4,1) and (4, —1) are known to be

hyperbolic. Our test confirms this for (3,2) Dehn surgery.



QUANTITIES FROM SNAP

n =2

h=0and k=1

a=
[0.4954656064075546882700742435+0.3184344025224255962108800064*1,
0.2384629932649871770466704016+0.3145299052214213676739562796*1]
F =[3,-4,0, 11, 2]

G=[2-1,-1,2,0;-2,1, 1, -2, 0]

Pari-Gp CALCULATIONS
|b] = 6.465667870212635404201807594225101849482F — 28

Inverse Function Theorem data:

n = 1.618205277801913438468680573543738992211

e = 0.8091026389009567192343402867718694961057

0 = 0.004830066958223720619553909664170838579078

ﬂf = 0.001954009960983564713909747682988867681415

Kantorovich data:

L = 44.60747497092832814628093161972439417944
|f'(a)sup = 0.3089842845397057433721243439808921852965
|f'(a) " en = 0.3130058070195557125862651767333350941155

W = 0.1174058080091984317596820702542925455028

sup

W = 0.1144083109952044299550670223077376358121
len

. WHITEHEAD LINK COMPLEMENT

48

The Whitehead link complement is known to be complete hyperbolic [12] also.
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It is presented here.

QUANTITIES FROM SNAP

[1.000000000000000000000000000+1.000000000000000000000000000*T,
0.5000000000000000000000000000+-0.5000000000000000000000000000*1,
0.5000000000000000000000000000+-0.5000000000000000000000000000*1,
0.5000000000000000000000000000+40.5000000000000000000000000000*T]
F=[1,0,-1,0,-1,0,1,1,0;0,0,0, 1, 1, -1, 0, 0, 0]

G =

,1,1,1,1,-2,0,0,-1; 0, -1, -1,-1,-1, 1, 1, 1, 1;

1,1,1,1,1,0,-2,-2,-1; 0, -1, -1, -1,-1, 1, 1, 1, 1]

Pari-Gp CALCULATIONS
b = 0.E — 67

Inverse Function Theorem data:

n = 0.3492524727549174997185960915454269701487

e = 0.08731311818872937492964902288635674253719
0 = 0.001819023295598528644367687976799098802858

"76 = 0.0001588245959966463417128364714387159755176

Kantorovich data:
L =11.24722187920199251903453975695565990771

(@) Vsup = 1.431629090714748459427410728433167294882
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|f'(a) " en = 1.772180859844728150369452317838572240764

W = 0.02169020777494946413727384227646169243289

W = 0.01415496038127401571624506999479209159919

. (9872,11111) DEHN SURGERY: WHITEHEAD LINK COMPLEMENT

This example considers Dehn surgery on only one of the two cusps of the White-

head link complement.

QUANTITIES FROM SNAP

n=4

h=1and k=2

a=
[0.9999343700073827649570992430+1.000170536257729817727630077*1,
0.4999147436597508540443693049+0.4999671844066970777583211769*1,
0.5000852675298210651958243937+40.5000328032070212542658981140*1,
0.4999147436597508540443693049+0.4999671844066970777583211769*1]
F =

[20983, 0, -9872, 0, -9872, 11111, -1239, 20983, -2;

0,0,0,1,1,-1,0, 0, 0]

G =

1,1,1,1,1,-2,0,0,-1;0,-1,-1,-1, -1, 1, 1, 1, 1;
-1,1,1,1,1,0,-2,-2,-1; 0, -1, -1, -1, -1, 1, 1, 1, 1]

Pari-Gp CALCULATIONS
|b] = 6.290546043622649509854067366063508951285F — 24

Inverse Function Theorem data:



n = 0.4699646092529863617956753210664308522515
e = 0.1174911523132465904489188302666077130628
0 = 0.0000003499960590771897201036385563192345713977

%5 = 0.00000004112144028607414931402210141793751163981

Kantorovich data:

L = 56237.01131396100111291495604741250466464

|f'(a) sup = 1.063909899076773471157618529051471308315
|f(a) Mien = 1.235415661324873497175222236812823735348

W = 0.000007854853193291278165225494981053686965848
WQ—L = 0.000005825343870778317976532920417278552662252
len

. SMALLLINK COMPLEMENT
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This is the smaller of two extremely large link complements. See figure 8. It

has 32 tetrahedra and 4 cusps. These two links are used by Leininger [9] to

construct other knots and links by cut and paste methods, and then looking

at their covers. For any even integer g > 0, we eventually get from Smalllink

a two component link whose complement in S? contains an embedded totally

geodesic surface of genus g. The importance of Smalllink is that prior to this,

such embedded surfaces could only be found in the complement of links with

more than two components.

QUANTITIES FROM SNAP



52

Figure 8: The Link Smalllink

[5.431680776271168985E-77+1.043190149785894973378994944*],
0.4788708557877967957032308372+0.4995533597773714501527030266*1,
-4.471822153042346518E-77+0.9585980084313877504633692171*1,
0.5211291442122032042967691627+0.4995533597773714501527030266*1,
0.2929970420861826752219808548+1.473911044296957810855392169*1,
-0.4509782171525463654321193064+1.200765444220459728291241593*1,
1.000000000000000000000000000+0.9300613056344272435239940348*1,
0.4638110047891777790136229363+0.4986886369525889712130902195*1,
0.2371128008078259554449875702+0.6313317290357266968810549581*1,
0.3060049499572359024927254903+0.4485055715132523515850447879*1,
0.8585412796265143611585133046+1.027932770073775455116265474*1,
0.5000000000000000000000000000+-0.4792990042156938752316846085*1,
0.4375240155821198504166057790+0.8813536566549109733830907053*1,
1.042258288424406408593538325+0.9991067195547429003054060533*1,
0.6696776343174901312972923995+0.7426519144895069642064793083*1,

0.4518888703362351094400929330+0.9102903934144040876554144906*1,
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0.03927009472823897821842546946+1.571359648665194056162768058*1,
-8.46343996 E-78+-0.9585980084313877504633692171*1,
1.000000000000000000000000000+1.043190149785894973378994944*1,
0.02451089142372681728394034675+0.5982980953722294364585245396*1,
0.9621628947892310086730291057+0.3083453854492406606721071067*1,
0.7354295168083648566686302069+0.5515583107626382072967381105*1,
0.6213864977872760582396031709+0.4161571993484503024065288682*1,
0.6756917822944407062548472825+0.1978399260627268524593119332*1,
0.5213536432299720005859050458+1.346701507985612627940863123*1,
0.2659365860052524158474189000+-0.5690611275237113909012011313*1,
0.8916797222785394793793396465+0.5330292860478110834980601119*1,
0.4489838724616496515202858898+0.4713823217067450930880172825*1,
0.5364433482241135276673629307+0.6234802797569418514001720639*1,
-0.4489884234808609710528328543+0.3884305318039174460267193001*I,
1.000000000000000000000000000+0.9585980084313877504633692171*1,

-8.49494342E-77+41.043190149785894973378994944*]]
F =

[0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0,0,0,0,0,0,0,0,0,0, 0,0, 1, 0, 0,

> U, U,

» Uy U,y
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e
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o © © o o
© © © © o
o © © o o
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0,0,0,0,0,0,0,0,0,00,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, -1,

0
0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,1,-1,-1,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0, -1,
0
0

(=} =} [=] [=]
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0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1;0,1,-1,0,0, -1, 0, 0, 0, 0, 0, 0, 0, 0,

0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,1,0,-1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 1, 0, 0,

;0,0,1,-1,1,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0,0, 1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -1,0,0,0,0, 0, 0,0, 0, 0, 0,0, 0, 0, 0, -1,
0,0,0,-1,0,0,0,0,-1,0,0,0,0,1,-1,-1, 0,0, 0, 0, 0,0, 0,0, 0, 0, 0, -1, 1, 0, 0, 0 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,-1,0, 0, -1, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0,
-1;0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0,
0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-2;0,0,0,0,0,-1,-1, 1, -1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0,
0,0,0,0,0,00,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,0,0,0,2;0,0,0,0,0,0,0,0, -1, 0, 0,
0,0,0,0,01,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,-1, 1,0, 0, 0, 0, 0,
0,0,0;0,0,0,0,0,1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 1, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1;0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1, -1, 0, -1, 0,
0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0, 1, -1,0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, -1, 0, 0,
0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0, 0,0, 0,0, 0,0, 0, 0, -1, 0, 0, -1, 0, 0,
0,0,0,0,-1; 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 0, 0,0, 0,0, 0,0, 0, 1, 0,
0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 0,0, 0,0, 0,0,0,0,1,0,0,0,0,0,0,0,0,0, 1, 0, 0, 0, 0, 0, 1,
0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 1,0, -1; 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,0,0,0,0,0,-1,0,0,0, 0, 0, 0, -1,
0,-1,0,0,0,-20,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0, 0,
1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,0, -1, 0,
0,0,0,0,0,00,0,0,0,0,0,0,00,0,1,0,0,1,0,-1,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0, 1; 0,0, 0,0, 0, 0,
1,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1, 0, 1, 0, 1, 0, 0, 0, -1, 0,
0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 1, 0,0, -1, 0, 0,0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0, 1,-1,0, 0, 0; 0, 0,0, 0,0, 0,0,0,0,0,0,-1,1, 0, 1, 1, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0,0, 0, -1; 0, 0, 0, 0, 0,
0,0,0,-1,0,0,0,0,0,0,-1,0,1,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0, -1, 1, 0, 0,
0,-1,0,0,0,0,0,1,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0, 1, 0, 0, 0, 0, 0,
0,0,0,-1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, -1, 0, -1;0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0, 0,0, 1, 0, 0,
0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0, 1,0, 0,0, 0,0, 0, 0; 0, 0, 0, O,
0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0,
0,0,0,1,0,1,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 0, 0,0, 0,0, 0,0, 0,0, 0, 0, -1, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0; 0,0, 0, 0, 0, 0, 0, 0,0, 0,0,0, 0,0, 0,0, 0, -1, -1,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0, 0, 0,0, 0, 0,0, 0,0, 0, -1, -1, 0; 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,-1,0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,-1,1,0,0,0,1,0,0,2;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 1,0, -1,0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,-1,1,0,0,1,-1,0,0,0,0,0;0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,0, 0, 0, 0,

0,0,0,0,0,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -1, 1, 0, 0, 0, 0, -1]

Pari-Gp CALCULATIONS

|b] = 2.890741236697218507543429035402903716418 F — 27



%)

Inverse Function Theorem data:

n = 0.06088023362739367144207474114386922499683

e = 0.001902507300856052232564835660745913281150

0 = 0.000002621083393319875853253543451425259797429

2 — (),00000003989304233554895469198952121344260068223

4

Kantorovich data:

L = 38.46960927036768465200292167581178343887
|f'(a) " sup = 8.212846275527759925085525656342053316915
|f'(a) " en = 10.32145710779244812406937753131330598443

W = 0.0001926925132239904423664849871566682428236

up

W)I,I‘Q—L = 0.0001220029142841818172845137711227723107218

a len

. BIGLINK COMPLEMENT

This example deals with the larger of the two links mentioned in the previous
example. See figure 9. It has 57 tetrahedra and 11 cusps. For any g > 2. the
complement of Biglink contains a closed totally geodesic surface of genus ¢, and
there is an infinite sequence of Dehn filling coefficients {(pjj, ¢ij)1<i<10}32, such
that for each 7, the surface is also included in the Dehn filling of 10 out of the 11
cusps in the complement of Biglink in S*. By cut and paste on Biglink, there
is an infinite sequence of knots, {Kj};";l, where for each j, the complement
of K; in S? is homeomorphic to the cover of the corresponding Dehn filling
described above. The principal curvature of the embedding of the surface into

the complement of K; converges to zero as j — oo. This gives evidence that
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Figure 9: The Link Biglink

there is a counterexample to the conjecture of Menasco and Reid that there
are no hyperbolic knots in S which contain closed embedded totally geodesic
surfaces in their complement. The calculations in Pari-Gp have been set to 125

significant digits, but as above, they are only displayed to 40 significant digits.

QUANTITIES FROM SNAP

[1.158782270647143247050917636+0.9196847760114970597472726274*],
0.3692744572717491962139324887+1.541520107870206798762555869*1,
0.4651382994027756058550693063+0.3345287563803869057830781538*1,
0.7418144117219689011103202648+-0.6706052330258012594446576994*1,
0.2242167001072306964797384009+1.298688353401913664176971985*1,
0.3023974615050923737812872753+0.5536626255098309764278713932*1,

0.5830321410748256540594026280+1.083022604258112203184180379*1,



0.2519097114045880666087096754+0.5449470633051167964915168767*1,
0.5259845582416346104061851974+-0.8805165307787365494680454513*1,
1.000000000000000000000000000+0.6260298578271997951529634803*1,
0.6395741954951861796362729751+0.4801239881029394577432337424*1,
1.000000000000000000000000000+0.9233417622756045666495433329*1,
-2.72517217E-137+41.083022604258112203184180379*1,
0.4602064199688765219662062469+0.4984139554509951427519747932*1,
0.2762905482350840528817033509+0.6901047959738613482364244899*1,
0.50000000000000000000000000004-0.4616708811378022833247716664*1,
0.3743007095348759849629913911+-0.7800643549806902744851580640*1,
0.9602254248324689231620227991+0.7762843619303948855002015497*1,
0.50000000000000000000000000004-0.7952032238523349385477646774*1,
0.03977457516753107683797720087+0.7762843619303948855002015497*I,
-0.2791483909903723592725459503+4-0.9602479762058789154864674849*1,
1.000000000000000000000000000+0.7506931822526181950548573042*1,
0.7184355092002201289002039952+0.4497620796826256977049533749*1,
-6.117559714432124475E-135+0.9233417622756045666495433329*1,
0.5397935800311234780337937530+0.4984139554509951427519747932*1,
0.7914318917644015561752442055+0.6112573604450261180032331368*1,
0.6469534030923889064938529645+1.083022604258112203184180379*1,
0.7370077208791826947969074012+0.4402582653893682747340227256*1,
0.4547246175170458323155054225+1.332676274355746974479468977*1,
1.000000000000000000000000000+1.083022604258112203184180379*1,
0.4602064199688765219662062469+0.4984139554509951427519747932*1,
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1.000000000000000000000000000+0.5973590953215259340130126106*1,
0.4065088426210201073063291103+-0.6805100078073114320639594485*1,
0.5000000000000000000000000000+1.222021309936367533656049638*1,
0.5259845582416346104061851974+0.8805165307787365494680454513*1,
0.2293345248982259555296819493+0.6721181753724961795982236043*1,
0.7390728466303382839959029562+0.8004325990940453144914948035*1,
0.6226807304139232560571957507+0.6743773062742306578386953216*1,
0.1266813969858828307645942983+0.6361697448790930107855080342*1,
0.5000000000000000000000000000+1.632044276893366528129474857*1,
0.4795012707624852590078929240+-0.8538624437590239378622942580*1,
0.4740154417583653895938148025+0.8805165307787365494680454513*1,
0.50000000000000000000000000004-0.8370174722641113808522003186™*1,
0.5000000000000000000000000000+1.222021309936367533656049638*1,
0.6904010911733571045007793186+0.8041449942382041126934846798*1,
0.1290927941390155494448398675+0.7477199877452115734618515298*1,
1.000000000000000000000000000+0.9233417622756045666495433329*1,
1.079587160062246956067587506+0.9968279109019902855039495864*1,
0.5000000000000000000000000000+1.248875143182024612422732343*1,
0.07958716006224695606758750608+0.9968279109019902855039495864*1,
-0.6050428150975738666770697550+0.7961929363532453752743663404*1,
1.000000000000000000000000000+1.083022604258112203184180379*,
0.5397935800311234780337937530+0.4984139554509951427519747932*1,
0.8270620386659764830999618379+2.166045208516224406368360759*1,
0.9633734779922633804202076464+0.4587466042012591685781199239*1,
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1.000000000000000000000000000+0.9233417622756045666495433329*1,

1.000000000000000000000000000+1.083022604258112203184180379*]
F =

[0,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, -1, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1; 0,0,0,1,0,0,0,0,0,1,0,1, 0,1, 0, 2,0,0,0,0,-1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0, 0,0,-1,0,0,0,0,0,0,0,0,0,0, 0,0, -1, -1, 0, 0, -2, 0, 0, 0, 0, 0, O,
0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0,0, 1,0, -1; 0,0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, O,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0,0, 0,0, 0, 0, 0, 0, O,
0,1,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,0, 0, 0, O,
0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1, 0, 0,0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0,
0,0,0,0,-1,0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1,0,0,1,0,1; 0,0,0,0,0,0,0,0,0,0,0, -1, 0,0, 0, 0,0, 0, 0, 0,0, 0, 0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,1,-1,0,1,0,0,0,0,0,0,0,0,0,0,0, 0, 1, 0,0, 0, 0,0, 0, 0, 0,
0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0, 1,-1,1,0,0, 0, 1; 0, 0, 0, 0, 0, 0, 0, 0, O, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, -1, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0,
0,0,0,-1,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0, 0, -1, -1, -1, -1, 0, 0, 0, -1, 0, 0, 0, O,
0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -1,0, 0, 0, 1,
0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 2 0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0,
0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 0, -1, 0,0, 0, 0, 0,0, 0,0, 0, 0,0, 0,0, 0, 0, 0,0, 0, 0, 0, 0, 0,
0,0,1,0,0,0,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, -1, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0, 0, 1, 0, 0,0, 0, 0, 0, 0, 0, 0,0, 0,0, 0, 0, 0, 0, 0, 0,
0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0, -1, 0,0, 0, 0, 0, 0, 0, 0, 0, O,
0,0,0,00,0,00,0,1,0;-1,2,0,1,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0, -1, 1, 0, 0,
0,0,0,0,-1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-2,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, -1, -1,
1,1,0,0,0,0,1,-1,0,0,0,0,0,0,2,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1]

G =

[1,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -1, 0, 1, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,
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0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,
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0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0, 0,0, 0,0, 0, 0, 0,0, 0, 0,
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0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0, 0, 0,0, 0, 0,
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0,0,0,0,0,0,0,0,00,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0, 0,0, 0, -2;
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0,1,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 1, 0, 0, 0, 0, 0, 0, 0,
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0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 0, 0, 0, 0, -1, 0, 0,
0,1;0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0,
0,-1,0,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0, 0,0, 0, 0, 0, 0,
0,0,0,0000,0001,0,0,1,-1,1,0,0,0,3;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,0,0,0,00,00,0,0,0,0,00,1,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, -1, 0,-1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,0, 0,0, 0, 0, -1, 0, 0, 0, 0,
0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,0, 0, 0,0, 0, 0, 0,
0,0,00,00,0,-1,0,-1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,-1,-1,0,0, 0,0, 0, 0, 0, 0, 0,
0,0,0,00,00,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0,
0,0,0,0,00,0,0,00,00,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0, 0, 0, 0,
0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,-1, 1,0, 0; 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, -1, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,1,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1, 0,0, 0,0,0,0,0,0,1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1, 0,0, 0, 0,0, 0,0, 0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0, 0,0, -1, 0, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, O,
0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,1,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,
0,0,0,00,00,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1; 0, 0, 0, 0,
0,0,0,0,0,0,00,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0, -1, 0,
0,0,0,00,00,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,1,0,0,-1,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0,0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0, 0,0, 0, 0,0, 0, 1, 0, 0,

1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0, 0,
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0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,-1,0,0,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0,0, 0, 0,
0,0,0,00,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0, 0, 0,
0,0,0,0,00,0,-1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0, 0, 0,0, 0,0, 0,0, 0, 0,
0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0, 0,0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0, 1, 0, 0,0, 0, 0,0, 0, 0, -1, 0, 0, 1, -1, 0, 0,

0,
0,
0,
0,
1,
0,
0,

0,

0,

0,

0,

0,

0,

0,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1;
0,
0,
0,
0,
0,
0,

0,
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0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,0,0, 0,0, 0, 0, 0, 0,
0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0, 0,0, 0,0, 0,0, 0, 0, 0,
0,0,0,0,1,0,0,-1,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 1, 0, 0,
0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0; 0,0, 0,0, 0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,0, 0, 0,0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,-2;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1,0,0,0,0,0,-1, 1,0, 0, 0,0, 0,0, 0, 0, 0, 1, 0, 0, 0, -1, 0,
0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0,0,0,1,0,0,0,0,0,1,0,0,-1,0,0, 0, 0, 0,
0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,
0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0, 0,
0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0, 0, -1,-1; 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1, 1,0, 0,0,0,1,0,0,0,0,0,0,0,0,0,0,1, 0,0, 0,0, 0, 0, 0, 0,
0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,1,-1; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 1,0, 0, 0,0, 1, 1, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, -1, 1, 0, 0,
0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0, 0,
0,0,0,0,0,-1,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0, 0,
0,0,0,0,0,0,00,0,0,0,0,0,0,1,0,1,1,-1,0,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 1; 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,0, 0,0, 0, 0, 0, 0,
0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,1,-1,0,0,0,-1,1, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1; 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,0, 0, 0,0, 0,0, 0, 0, 0,
-1,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1, 0,0, 0, 0,0, 0, 0,0, 0, 0, 0, 0,0, 0, 0, 0,0, 0,0, 0, 0, 0, 0,
0,0,0,-1,0,0,0,0,0,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0,0, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 0, -1, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,1,-1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,-1,0,0,0,0,0,0,0, 0,0, 0, 0, 0, 0,
0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,-1, 1,0, 0, -1, 0,
0,0,0,00,00,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0, 0,0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,1,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0, 0,0, 0, 0,0, 0,0, -1, -1; 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, -1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,1,0,0, 1,0, 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, -1, 0, -1, 1, 0, 0, 0, 0,
0,0,0,0,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, -1,
1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; 0, 0,0, 0,0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1, 1, 1, 0, 0, 0, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0,0,0,0, 0,0, 0,0, 0, 0, 0,

-1,1,0,0,0,0,0,0,0,0,-1; 0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0,0, 0, 0,0, 0, 0,
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6,0,00,0,000,0,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0, 0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0, 0, -1, 1, 0, 0, 0, 0, 0]

Pari-Gp CALCULATIONS

|b] = 4.561638089524197282780803329134126087047F — 27

Inverse Function Theorem data:

n = 0.04411048735566768512251112007367997834516

e = 0.0007738681992222400898686161416435083920204

0 = 0.0000007859853502525206262922122859280543982934

"75 = 0.000000008667549213513461966953652607177743018047

Kantorovich data:
L = 38.69990090618816909906768917402744007679
|f’(a)’1\sup = 11.33517288005560449348826624292354127942

/(@) ien = 14.58230300417961960848424155929725548467

W = 0.0001005550427362150131100157033771382963935
W)El\i—ﬁ = 0.00006075862193098799511624683864295535271091

4.3 Cusped Census

We can apply the tests of Theorem 1.2 to every manifold in the SnapPea cusped
census. The results are found in the following theorem.

Theorem 4.1 Every manifold in the SnapPea cusped census has a complete hyper-
bolic structure.

A program was written in Perl [1] that issues commands to Snap to send tetrahedron

shapes and filling equations for each manifold in the cusped census to an output file.



64

Then a Pari-Gp program reads the file, getting the needed data per manifold, and
applies the template using this input. The program then prints out the results. The
first run of this process determined that all but four manifolds, 5 168, 6 297, 7 1431
and 7 1927, have a complete hyperbolic structure. The program rejected these four
because each one, upon triangulation by Snap, had one tetrahedron shape parameter
with an imaginary component that was effectively zero. This was remedied by revising
the original Perl program to process only these four manifolds, and including the
“randomize” command to get a different, acceptable triangulation. The Pari-Gp
program, also revised to process only these four manifolds, was then run using the
second Perl output file. The result was a determination that they also have a complete
hyperbolic structure.

These programs can be adapted to give other information, such as the maximum
value that normb, the norm of b, assumes over all the manifolds in the cusped census.
Call this maxnormb. Similarly, for each manifold, we can ascertain the largest of the
three values that normb is compared to, and then the minimum of these maximum
comparison values over all the manifolds in this census. We do this because as long
as normb of a manifold is less than the largest of the three comparison values for that
manifold, the manifold will have a complete hyperbolic structure. Then if normb of a
manifold in the census is less than the smallest of these maximum comparison values
over the whole census, that manifold is guaranteed to have a complete hyperbolic
structure. Call this minimum of maximum comparison values minmaxvalue. It tells
us the precision needed to evaluate a manifold in the census. We have
maxnormb = 1.717844093022015223183888589087321425164875899778 E-26
minmazvalue = 0.00000147831677691814063380907736140260722549837777747014.
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Thus, the approximate solution given by SnapPea, which is given to 10 digits but
is computed to an internal precision of at least 15 significant digits, is sufficient for
use as our ay,...,a,. It is interesting to see that the largest normb is considerably
smaller than the smallest comparison value over the entire cusped census. The Perl
programs and output files, as well as the Pari-Gp programs and log files, can be found

at [10].
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